Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Death Dis ; 10(2): 117, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741932

RESUMEN

The ETS transcription factor Fli-1 controls the expression of genes involved in hematopoiesis including cell proliferation, survival, and differentiation. Dysregulation of Fli-1 induces hematopoietic and solid tumors, rendering it an important target for therapeutic intervention. Through high content screens of a library of chemicals isolated from medicinal plants in China for inhibitors of a Fli-1 transcriptional reporter cells, we hereby report the identification of diterpenoid-like compounds that strongly inhibit Fli-1 transcriptional activity. These agents suppressed the growth of erythroleukemic cells by inducing apoptosis and differentiation. They also inhibited survival and proliferation of B-cell leukemic cell lines as well as primary B-cell lymphocytic leukemia (B-CLL) isolated from 7 patients. Moreover, these inhibitors blocked leukemogenesis in a mouse model of erythroleukemia, in which Fli-1 is the driver of tumor initiation. Computational docking analysis revealed that the diterpenoid-like compounds bind with high affinity to nucleotide residues in a pocket near the major groove within the DNA-binding sites of Fli-1. Functional inhibition of Fli-1 by these compounds triggered its further downregulation through miR-145, whose promoter is normally repressed by Fli-1. These results uncover the importance of Fli-1 in leukemogenesis, a Fli-1-miR145 autoregulatory loop and new anti-Fli-1 diterpenoid agents for the treatment of diverse hematological malignancies overexpressing this transcription factor.


Asunto(s)
ADN/metabolismo , Diterpenos/química , Proteína Proto-Oncogénica c-fli-1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión , Carcinogénesis/efectos de los fármacos , Línea Celular Tumoral , ADN/química , Diterpenos/farmacología , Diterpenos/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Estimación de Kaplan-Meier , Leucemia/tratamiento farmacológico , Leucemia/mortalidad , Leucemia/patología , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , MicroARNs/metabolismo , Simulación del Acoplamiento Molecular , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Proteína Proto-Oncogénica c-fli-1/antagonistas & inhibidores , Proteína Proto-Oncogénica c-fli-1/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/uso terapéutico
2.
FEBS J ; 285(24): 4631-4645, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30387554

RESUMEN

E26 transformation-specific (ETS) gene family contains a common DNA-binding domain, the ETS domain, responsible for sequence-specific DNA recognition on target promoters. The Fli-1 oncogene, a member of ETS gene family, plays a critical role in hematopoiesis and is overexpressed in diverse hematological malignancies. This ETS transcription factor regulates genes controlling several hallmarks of cancer and thus represents an excellent target for cancer therapy. By screening compounds isolated from the medicinal plant Dysoxylum binectariferum in China, we identified two chemically related flavagline-like compounds including 4'-demethoxy-3',4'-methylenedioxyrocaglaol and rocaglaol that strongly inhibited Fli-1 transactivation ability. These compounds altered expression of Fli-1 target genes including GATA1, EKLF, SHIP1, and BCL2. Consequently, the flavagline-like compounds suppressed proliferation, induced apoptosis, and promoted erythroid differentiation of leukemic cells in culture. These compounds also suppressed erythroleukemogenesis in vivo in a Fli-1-driven mouse model. Mechanistically, the compounds blocked c-Raf-MEK-MAPK/ERK signaling, reduced phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), and inhibited Fli-1 protein synthesis. Consistent with its high expression in myelomas, B-cell lymphoma, and B chronic lymphocytic leukemia (B-CLL), pharmacological inhibition of Fli-1 by the flavagline-like compounds or genetic knock-down via shRNA significantly hindered proliferation of corresponding cell lines and patients' samples. These results uncover a critical role of Fli-1 in growth and survival of various hematological malignancies and point to flavagline-like agents as lead compounds for the development of anti-Fli-1 drugs to treat leukemias/lymphomas overexpressing Fli-1.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Benzofuranos/farmacología , Leucemia/tratamiento farmacológico , Extractos Vegetales/farmacología , Proteína Proto-Oncogénica c-fli-1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/química , Apoptosis , Benzofuranos/química , Ciclo Celular , Proliferación Celular , Ensayos Analíticos de Alto Rendimiento , Humanos , Leucemia/metabolismo , Leucemia/patología , Ratones , Extractos Vegetales/química , Plantas Medicinales/química , Células Tumorales Cultivadas
3.
Eur J Med Chem ; 143: 1968-1980, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29133049

RESUMEN

Tetrandrine is a dibenzyltetrahydroisoquinoline alkaloid, isolated from traditional Chinese medicinal plant Stephania tetrandra, with anti-tumor activity. Our previous study identified several derivatives of tetrandrine showing better activities than parental compound against human hepatocellular carcinoma cells. To increase diversity and cytotoxic activities of the original compound, a series of novel 14-urea-tetrandrine derivatives were synthesized through structural modification of tetrandrine. These derivaties demonstrated a moderate to strong anti-proliferative activities against human cell lines HEL and K562 (Leukemia), prostate (PC3), breast (MDA-MB-231) and melanoma (WM9). Compound 4g showed strongest cytotoxic effect against PC3 cells with IC50 value of 0.64 µM, which was 12-fold, 31-fold and 26-fold lower than the parental tetrandrine, 5-fluorouracil and cisplatin, respectively. Preliminary structure-activity relationship study indicated that urea subsititution was the key pharmacophore for the enhancement of their antitumor activities. Induction of apoprosis by 4g was associated with the activation of pro-apoptotic protein BAX and inhibition of antiapoptosis proteins survivin as well as Bcl-2. Moreover, activation of caspases led to increase cleavage of PARP, which further accelerates apoptotic cell death. These results reveal that the compound 4g may be used as a potential anticancer drug candidate.


Asunto(s)
Antineoplásicos/farmacología , Bencilisoquinolinas/farmacología , Diseño de Fármacos , Urea/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Bencilisoquinolinas/química , Radioisótopos de Carbono , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas , Urea/química
4.
Int J Oncol ; 51(2): 456-466, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28586009

RESUMEN

The ETS transcription factors play a critical role during hematopoiesis. In F-MuLV-induced erythroleukemia, Fli­1 insertional activation producing high expression of this transcription factor required to promote proliferation. How deregulated Fli­1 expression alters the balance between erythroid differentiation and proliferation is unknown. To address this issue, we exogenously overexpressed Fli­1 in an erythroleukemic cell harboring activation of spi­1/PU.1, another ETS gene involved in erythroleukemogenesis. While the proliferation in culture remains unaffected, Fli­1 overexpression imparts morphological and immunohistochemical characteristics of immature erythroid progenitors. Fli­1 overexpression in erythroleukemic cells increased the numbers of erythroid colonies on methylcellulose and reduced tumorigenicity as evidenced by increase latency of erythroleukemogenesis in mice inoculated with these cells. Although all transplanted mice developed enlargement of the spleen and liver due to leukemic infiltration, Fli­1 overexpression altered the hematopoietic phenotype, significantly increasing the expression of regulatory hematopoietic genes cKIT, SCA-1, CD41 and CD71. In contrast, expression of Spi­1/PU.1 in a Fli­1 producing erythroleukemia cell line in which fli­1 is activated, resulted in increased proliferation through activation of growth promoting proteins MAPK, AKT, cMYC and JAK2. Importantly, these progenitors express high levels of markers such as CD71 and TER119 associated with more mature erythroid cells. Thus, Fli­1 overexpression induces a de-differentiation program by reverting CFU-E to BFU-E erythroid progenitor activity, while Spi­1/PU.1 promoting maturation from BFU-E to CFU-E.


Asunto(s)
Proteínas de Unión al ADN/genética , Leucemia Eritroblástica Aguda/genética , Proteínas de Neoplasias/genética , Proteína Proto-Oncogénica c-fli-1/genética , Animales , Diferenciación Celular/genética , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/patología , Virus de la Leucemia Murina de Friend/genética , Virus de la Leucemia Murina de Friend/patogenicidad , Regulación Neoplásica de la Expresión Génica/genética , Hematopoyesis/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular , Leucemia Eritroblástica Aguda/patología , Leucemia Eritroblástica Aguda/virología , Ratones , Péptidos/genética
5.
Oncotarget ; 8(10): 16728-16743, 2017 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-28052010

RESUMEN

The ETS-related transcription factor Fli-1 affects many developmental programs including erythroid and megakaryocytic differentiation, and is frequently de-regulated in cancer. Fli-1 was initially isolated following retrovirus insertional mutagenesis screens for leukemic initiator genes, and accordingly, inhibition of this transcription factor can suppress leukemia through induction of erythroid differentiation. To search for modulators of Fli-1, we hereby performed repurposing drug screens with compounds isolated from Chinese medicinal plants. We identified agents that can transcriptionally activate or inhibit a Fli-1 reporter. Remarkably, agents that increased Fli-1 transcriptional activity conferred a strong anti-cancer activity upon Fli-1-expressing leukemic cells in culture. As opposed to drugs that suppress Fli1 activity and lead to erythroid differentiation, growth suppression by these new Fli-1 transactivating compounds involved erythroid to megakaryocytic conversion (EMC). The identified compounds are structurally related to diterpene family of small molecules, which are known agonists of protein kinase C (PKC). In accordance, these PKC agonists (PKCAs) induced PKC phosphorylation leading to activation of the mitogen-activated protein kinase (MAPK) pathway, increased cell attachment and EMC, whereas pharmacological inhibition of PKC or MAPK diminished the effect of our PKCAs. Moreover, in a mouse model of leukemia initiated by Fli-1 activation, the PKCA compounds exhibited strong anti-cancer activity, which was accompanied by increased presence of CD41/CD61 positive megakaryocytic cells in leukemic spleens. Thus, PKC agonists offer a novel approach to combat Fli-1-induced leukemia, and possibly other cancers,by inducing EMC in part through over-activation of the PKC-MAPK-Fli-1 pathway.


Asunto(s)
Diterpenos/farmacología , Leucemia Eritroblástica Aguda/tratamiento farmacológico , Proteínas de Microfilamentos/metabolismo , Proteína Quinasa C/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Células Precursoras Eritroides/efectos de los fármacos , Células Precursoras Eritroides/patología , Humanos , Células K562 , Leucemia Eritroblástica Aguda/enzimología , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/patología , Sistema de Señalización de MAP Quinasas , Megacariocitos/efectos de los fármacos , Megacariocitos/patología , Ratones , Células 3T3 NIH , Transactivadores
6.
Mol Clin Oncol ; 5(6): 717-723, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28101351

RESUMEN

Medicinal formulas are a part of the complex discipline of traditional Chinese medicine that has been used for centuries in China and East Asia. These formulas predominantly consist of the extracts isolated from herbal plants, animal parts and medicinal minerals. The present study aimed to investigate the impact of 150 formulas, used as non-prescription drugs in China, on the treatment of cancer. A formula was identified, C54, commonly used to treat sore throats, which exhibited marked growth inhibition in vitro, associated with cell cycle arrest and apoptosis. Cytotoxicity was, in part, due to the ability of C54 to inhibit the expression and function of the transcription factor, Fli-1, leading to marked inhibition of leukemic cell growth in tissue culture. However, when injected into a model of leukemia initiated by Fli-1 activation, C54 only exhibited a limited tumor inhibition. C54 also did not suppress xenograft growth of the breast cancer cell line, MDA-MB-231, orthopedically transplanted into the mammary fat pad of severe combined immunodeficiency (SCID) mice. Notably, splenomegaly and accumulation of inflammatory CD11b+/Gr1+ monocytes were observed in the tumors and spleens of C54-treated mice. As inflammation is known to accelerate tumor progression, this immune response may counteract the cell-autonomous effect of C54, and account for its limited tumor inhibitory effect in vivo. Combining C54 with an anti-inflammatory drug may improve the potency of C54 for treatment of certain cancers. The present study has highlighted the complexity of Chinese medicinal compounds and the need to thoroughly analyze their systemic effects at high concentrations in vivo.

7.
Eur J Med Chem ; 97: 83-93, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25982329

RESUMEN

There is an urgent need to develop new antibacterial agents because of multidrug resistance by bacteria and fungi. Schiff bases (aldehyde or ketone-like compounds) exhibit intense antibacterial characteristics, and are therefore, promising candidates as antibacterial agents. To investigate the mechanism of action of newly designed benzaldehyde Schiff bases, a series of high-yielding benzaldehyde Schiff bases were synthesized, and their structures were determined by NMR and MS spectra data. The structure-microbicidal activity relationship of derivatives was investigated, and the antibacterial mechanisms were investigated by gene assays for the expression of functional genes in vitro using Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The active compounds were selective for certain active groups. The polar substitution of the R2 group of the amino acids in the Schiff bases, affected the antibacterial activity against E. coli and S. aureus; specific active group at the R3 or R4 groups of the acylhydrazone Schiff bases could improve their inhibitory activity against these three tested organisms. The antibacterial mechanism of the active benzaldehyde Schiff bases appeared to regulate the expression of metabolism-associated genes in E. coli, hemolysis-associated genes in B. subtilis, and key virulence genes in S. aureus. Some benzaldehyde Schiff bases were bactericidal to all the three strains and appeared to regulate gene expression associated with metabolism, hemolysis, and virulence, in vitro. The newly designed benzaldehyde Schiff bases possessed unique antibacterial activity and might be potentially useful for prophylactic or therapeutic intervention of bacterial infections.


Asunto(s)
Antiinfecciosos/síntesis química , Benzaldehídos/síntesis química , Bases de Schiff/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Benzaldehídos/química , Benzaldehídos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Expresión Génica/efectos de los fármacos , Hemólisis/efectos de los fármacos , Estructura Molecular , Bases de Schiff/química , Bases de Schiff/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Relación Estructura-Actividad , Virulencia/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA