RESUMEN
Over-generalized fear is a maladaptive response to harmless stimuli or situations characteristic of posttraumatic stress disorder (PTSD) and other anxiety disorders. The dorsal dentate gyrus (dDG) contains engram cells that play a crucial role in accurate memory retrieval. However, the coordination mechanism of neuronal subpopulations within the dDG network during fear generalization is not well understood. Here, with the Tet-off system combined with immunostaining and two-photon calcium imaging, we report that dDG fear engram cells labeled in the conditioned context constitutes a significantly higher proportion of dDG neurons activated in a similar context where mice show generalized fear. The activation of these dDG fear engram cells encoding the conditioned context is both sufficient and necessary for inducing fear generalization in the similar context. Activities of mossy cells in the ventral dentate gyrus (vMCs) are significantly suppressed in mice showing fear generalization in a similar context, and activating the vMCs-dDG pathway suppresses generalized but not conditioned fear. Finally, modifying fear memory engrams in the dDG with "safety" signals effectively rescues fear generalization. These findings reveal that the competitive advantage of dDG engram cells underlies fear generalization, which can be rescued by activating the vMCs-dDG pathway or modifying fear memory engrams, and provide novel insights into the dDG network as the neuronal basis of fear generalization.
Asunto(s)
Giro Dentado , Miedo , Neuronas , Animales , Miedo/fisiología , Giro Dentado/fisiología , Ratones , Masculino , Neuronas/fisiología , Neuronas/metabolismo , Ratones Endogámicos C57BL , Condicionamiento Clásico/fisiología , Memoria/fisiología , Generalización Psicológica/fisiologíaRESUMEN
Single-cell cross-modal joint clustering has been extensively utilized to investigate the tumor microenvironment. Although numerous approaches have been suggested, accurate clustering remains the main challenge. First, the gene expression matrix frequently contains numerous missing values due to measurement limitations. The majority of existing clustering methods treat it as a typical multi-modal dataset without further processing. Few methods conduct recovery before clustering and do not sufficiently engage with the underlying research, leading to suboptimal outcomes. Additionally, the existing cross-modal information fusion strategy does not ensure consistency of representations across different modes, potentially leading to the integration of conflicting information, which could degrade performance. To address these challenges, we propose the 'Recover then Aggregate' strategy and introduce the Unified Cross-Modal Deep Clustering model. Specifically, we have developed a data augmentation technique based on neighborhood similarity, iteratively imposing rank constraints on the Laplacian matrix, thus updating the similarity matrix and recovering dropout events. Concurrently, we integrate cross-modal features and employ contrastive learning to align modality-specific representations with consistent ones, enhancing the effective integration of diverse modal information. Comprehensive experiments on five real-world multi-modal datasets have demonstrated this method's superior effectiveness in single-cell clustering tasks.
Asunto(s)
Análisis de la Célula Individual , Análisis por Conglomerados , Análisis de la Célula Individual/métodos , Humanos , Algoritmos , Microambiente Tumoral , Biología Computacional/métodosRESUMEN
The eye presents a unique opportunity for complement component 3 (C3) therapeutics. Drugs can be delivered directly to specific parts of the eye, and growing evidence has established a pivotal role for C3 in age-related macular degeneration (AMD). Emerging data show that C3 may be important to the pathophysiology of other eye diseases as well. This article will discuss the location of C3 expression in the eye as well as the preclinical and clinical data regarding C3's functions in AMD. We will provide a comprehensive review of developing C3 inhibitors for the eye, including the Phase 2 and 3 data for the C3 inhibitor pegcetacoplan as a treatment for the geographic atrophy of AMD. Developing evidence also points toward C3 as a therapeutic target for stages of AMD preceding geographic atrophy. We will also discuss data illuminating C3's relationship to other eye diseases, such as Stargardt disease, diabetic retinopathy, and glaucoma. In addition to being a converging point and centerpiece of the complement cascade, C3 has broad effects as a multifaceted controller of opsonophagocytosis, microglia/macrophage recruitment, and downstream terminal pathway activity. C3 is a crucial player in the pathophysiology of AMD but also seems to have importance in other diseases that are major causes of blindness. Directions for further investigation will be highlighted, as culminating evidence suggests that we may be approaching an era of C3 therapeutics for the eye.
Asunto(s)
Atrofia Geográfica , Degeneración Macular , Humanos , Atrofia Geográfica/tratamiento farmacológico , Atrofia Geográfica/etiología , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/complicaciones , Activación de ComplementoRESUMEN
Microorganisms can produce a vast array of bioactive secondary metabolites, including DNA-intercalating agents like actinomycin D, doxorubicin, which hold great potential for cancer chemotherapy. However, discovering novel DNA-intercalating compounds remains challenging due to the limited sensitivity and specificity of conventional activity assays, which require large-scale fermentation and purification. Here, we introduced the single-molecule stretching assay (SMSA) directly to microbial cultures or extracts for discovering DNA-intercalating agents, even in trace amounts of microbial cultures (5 µl). We showed that the unique changes of dsDNA in contour length and overstretching transition enable the specific detection of intercalators from complex samples without the need for extensive purification. Applying force to dsDNA also enhanced the sensitivity by increasing both the binding affinity Ka and the quantity of ligands intercalation, thus allowing the detection of weak intercalators, which are often overlooked using traditional methods. We demonstrated the effectiveness of SMSA, identified two DNA intercalator-producing strains: Streptomyces tanashiensis and Talaromyces funiculosus, and isolated three DNA intercalators: medermycin, kalafungin and ligustrone B. Interestingly, both medermycin and kalafungin, classified as weak DNA intercalators (Ka â¼103 M-1), exhibited potent anti-cancer activity against HCT-116 cancer cells, with IC50 values of 52 ± 6 and 70 ± 7 nM, respectively.
Asunto(s)
ADN , Sustancias Intercalantes , Streptomyces , Sustancias Intercalantes/química , Sustancias Intercalantes/farmacología , ADN/química , Humanos , Streptomyces/genética , Streptomyces/metabolismo , Imagen Individual de Molécula/métodosRESUMEN
MOTIVATION: Molecular property prediction is a significant requirement in AI-driven drug design and discovery, aiming to predict the molecular property information (e.g. toxicity) based on the mined biomolecular knowledge. Although graph neural networks have been proven powerful in predicting molecular property, unbalanced labeled data and poor generalization capability for new-synthesized molecules are always key issues that hinder further improvement of molecular encoding performance. RESULTS: We propose a novel self-supervised representation learning scheme based on a Cascaded Attention Network and Graph Contrastive Learning (CasANGCL). We design a new graph network variant, designated as cascaded attention network, to encode local-global molecular representations. We construct a two-stage contrast predictor framework to tackle the label imbalance problem of training molecular samples, which is an integrated end-to-end learning scheme. Moreover, we utilize the information-flow scheme for training our network, which explicitly captures the edge information in the node/graph representations and obtains more fine-grained knowledge. Our model achieves an 81.9% ROC-AUC average performance on 661 tasks from seven challenging benchmarks, showing better portability and generalizations. Further visualization studies indicate our model's better representation capacity and provide interpretability.
Asunto(s)
Benchmarking , Aprendizaje , Diseño de Fármacos , Redes Neurales de la ComputaciónRESUMEN
BACKGROUND AND AIMS: Patients with acute myeloid leukaemia (AML) suffer from severe myocardial injury during daunorubicin (DNR)-based chemotherapy and are at high risk of cardiac mortality. The crosstalk between tumour cells and cardiomyocytes might play an important role in chemotherapy-related cardiotoxicity, but this has yet to be demonstrated. This study aimed to identify its underlying mechanism and explore potential therapeutic targets. METHODS: Cardiac tissues were harvested from an AML patient after DNR-based chemotherapy and were subjected to single-nucleus RNA sequencing. Cardiac metabolism and function were evaluated in AML mice after DNR treatment by using positron emission tomography, magnetic resonance imaging, and stable-isotope tracing metabolomics. Plasma cytokines were screened in AML mice after DNR treatment. Genetically modified mice and cell lines were used to validate the central role of the identified cytokine and explore its downstream effectors. RESULTS: In the AML patient, disruption of cardiac metabolic homeostasis was associated with heart dysfunction after DNR-based chemotherapy. In AML mice, cardiac fatty acid utilization was attenuated, resulting in cardiac dysfunction after DNR treatment, but these phenotypes were not observed in similarly treated tumour-free mice. Furthermore, tumour cell-derived interleukin (IL)-1α was identified as a primary factor leading to DNR-induced cardiac dysfunction and administration of an anti-IL-1α neutralizing antibody could improve cardiac functions in AML mice after DNR treatment. CONCLUSIONS: This study revealed that crosstalk between tumour cells and cardiomyocytes during chemotherapy could disturb cardiac energy metabolism and impair heart function. IL-1α neutralizing antibody treatment is a promising strategy for alleviating chemotherapy-induced cardiotoxicity in AML patients.
Asunto(s)
Daunorrubicina , Interleucina-1alfa , Leucemia Mieloide Aguda , Animales , Leucemia Mieloide Aguda/tratamiento farmacológico , Humanos , Interleucina-1alfa/metabolismo , Ratones , Cardiotoxicidad/etiología , Antibióticos Antineoplásicos/efectos adversos , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismoRESUMEN
BACKGROUND: Visual endoscopic retrograde appendicitis therapy (V-ERAT) involves a Single-use Video Scope, allowing real-time visualization of the appendiceal lumen during the procedure to treat uncomplicated acute appendicitis (AA). This study aims to compare V-ERAT to antibiotic therapy in treating uncomplicated AA. METHODS: This multicenter, retrospective cohort study was conducted at nine hospitals in China from August 2021 to July 2023. Propensity score matching was performed to minimize selection bias. A total of 692 uncomplicated AA patients were included, with 188 undergoing V-ERAT and 504 receiving antibiotic therapy. The primary outcome was treatment success rate. The secondary outcomes included recurrent appendicitis rate, the appendectomy rate during the initial hospitalization, length of initial hospitalization, time to disease recurrence, and overall adverse events. RESULTS: The treatment success rate did not differ between the V-ERAT and antibiotic groups (93.6%; 95% confidence interval [CI] 89.1% to 96.7% vs. 90.5%; 95% CI, 87.6% to 92.9%) ( P = 0.225). However, V-ERAT demonstrated a significantly lower risk of appendicitis recurrence compared to antibiotic therapy during the follow-up (log-rank P < 0.001), with a hazard ratio of 0.14 (95% CI 0.07-0.29, P < 0.001). V-ERAT was associated with a lower appendectomy rate during the initial hospitalization (4.3%; 95% CI, 1.9% to 8.2% vs. 9.5%; 95% CI, 7.1 to 12.4%) (P = 0.027), a shorter length of initial hospitalization (3 [IQR, 3-4] vs. 4 [IQR, 4-6] days, P < 0.001), and a longer time to recurrence (269 [IQR, 210-318] vs. 70 [IQR, 21-103] days, P < 0.001). The overall adverse event rates did not differ between the two groups (log-rank P = 0.064). CONCLUSION: V-ERAT appears to be a safe and effective alternative to antibiotic therapy in treating uncomplicated AA, significantly reducing the risk of appendicitis recurrence.
RESUMEN
Increasing biological evidence indicated that microRNAs (miRNAs) play a vital role in exploring the pathogenesis of various human diseases (especially in tumors). Mining disease-related miRNAs is of great significance for the clinical diagnosis and treatment of diseases. Compared with the traditional experimental methods with the significant limitations of high cost, long cycle and small scale, the methods based on computing have the advantages of being cost-effective. However, although the current methods based on computational biology can accurately predict the correlation between miRNAs and disease, they can not predict the detailed association information at a fine level. We propose a knowledge-driven approach to the fine-grained prediction of disease-related miRNAs (KDFGMDA). Different from the previous methods, this method can finely predict the clear associations between miRNA and disease, such as upregulation, downregulation or dysregulation. Specifically, KDFGMDA extracts triple information from massive experimental data and existing datasets to construct a knowledge graph and then trains a depth graph representation learning model based on knowledge graph to complete fine-grained prediction tasks. Experimental results show that KDFGMDA can predict the relationship between miRNA and disease accurately, which is of far-reaching significance for medical clinical research and early diagnosis, prevention and treatment of diseases. Additionally, the results of case studies on three types of cancers, Kaplan-Meier survival analysis and expression difference analysis further provide the effectiveness and feasibility of KDFGMDA to detect potential candidate miRNAs. Availability: Our work can be downloaded from https://github.com/ShengPengYu/KDFGMDA.
Asunto(s)
MicroARNs , Neoplasias , Algoritmos , Biología Computacional/métodos , Regulación hacia Abajo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/diagnóstico , Neoplasias/genéticaRESUMEN
Ferroptosis is a newly discovered form of cell death that is featured in a wide range of diseases. Exosome therapy is a promising therapeutic option that has attracted much attention due to its low immunogenicity, low toxicity, and ability to penetrate biological barriers. In addition, emerging evidence indicates that exosomes possess the ability to modulate the progression of diverse diseases by regulating ferroptosis in damaged cells. Hence, the mechanism by which cell-derived and noncellular-derived exosomes target ferroptosis in different diseases through the system Xc-/GSH/GPX4 axis, NAD(P)H/FSP1/CoQ10 axis, iron metabolism pathway and lipid metabolism pathway associated with ferroptosis, as well as its applications in liver disease, neurological diseases, lung injury, heart injury, cancer and other diseases, are summarized here. Additionally, the role of exosome-regulated ferroptosis as an emerging repair mechanism for damaged tissues and cells is also discussed, and this is expected to be a promising treatment direction for various diseases in the future. Video Abstract.
Asunto(s)
Exosomas , Ferroptosis , Lesión Pulmonar , Humanos , Muerte Celular , NADRESUMEN
The expression level of PD-L1 in tumor tissue is considered one of the effective biomarkers to guide PD-1/PD-L1 therapy. Quantifying whole-body PD-L1 expression by SPECT imaging may help in selecting patients that potentially respond to PD-1/PD-L1 therapy. Nanobody is the smallest antibody fragment with antigen-binding ability that is well suited for radionuclide imaging. Nevertheless, high retention of radioactivity in the kidney may limit its clinical translation. The present study aimed to screen, design, and prepare a nanobody-based SPECT probe with rapid renal clearance to evaluate the PD-L1 expression level in vivo noninvasively. A phage library was constructed by immunizing alpaca with recombinant human PD-L1 protein, and 17 anti-PD-L1 nanobodies were screened by the phage display technique. After sequence alignment and flow cytometry analysis, APN09 was selected as the candidate nanobody, and a GGGC chelator was attached to its C-terminus for 99mTc labeling to prepare a SPECT imaging probe. The affinity and specificity of 99mTc-APN09 were evaluated by protein and cell-binding experiments, and SPECT imaging and biodistribution were performed in a mouse model with bilateral transplantation of A549 and A549PD-L1 tumors. The ability of 99mTc-APN09 to quantify the PD-L1 expression level in vivo was validated in tumor models with different PD-L1 expression levels. 99mTc-APN09 had a radiochemical purity higher than 99% and a binding equilibrium dissociation constant of 21.44 ± 1.65 nM with hPD-L1, showing high affinity. SPECT imaging results showed that 99mTc-APN09 could efficiently detect PD-L1-positive tumors within 0.5 h, and the quantitative results of SPECT were well correlated with the expression level of PD-L1 in cell lines. SPECT imaging and biodistribution results also showed that 99mTc-APN09 was rapidly cleared from the kidney in 2 h postinjection. 99mTc-APN09 was a simple and stable tool for visualizing PD-L1 expression in the whole body. In addition, due to its significant reduction in renal retention, it has better prospects for clinical translation.
Asunto(s)
Antígeno B7-H1 , Neoplasias , Animales , Humanos , Ratones , Antígeno B7-H1/metabolismo , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único/métodos , Camélidos del Nuevo MundoRESUMEN
Saccharomyces boulardii (Sb) is a probiotic yeast for the treatment of gastrointestinal disorders, including inflammatory bowel disease (IBD). Little is known about the modulatory capacity of the Sb in IBD. Here, we found that oral gavage of Sb supernatant (SbS) alleviated gut inflammation, protected the intestinal barrier, and reversed DSS-induced down-regulated activation of epidermal growth factor receptor (EGFR) in colitis. Mass spectrum analysis showed that thioredoxin (Trx) is one of the critical secreted soluble proteins participating in EGFR activation detected in SbS. Trx exerted an array of significant effects on anti-inflammatory activity, including alleviating inflammation, protecting gut barrier, suppressing apoptosis, as well as reducing oxidative stress. Mechanistically, Trx promoted EGFR ligand gene expression and transactivated EGFR in a concentration-dependent manner. EGFR kinase inhibitor could block Trx-mediated preventive effects of intestinal epithelial injury. Our data suggested that Sb-derived soluble protein Trx could serve as a potential prophylactic, as a novel postbiotic against colitis, which provides a new strategy for the precision prevention and treatment of IBD.
Asunto(s)
Receptores ErbB , Saccharomyces boulardii , Tiorredoxinas , Animales , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/tratamiento farmacológico , Colitis/patología , Sulfato de Dextran , Receptores ErbB/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Probióticos/uso terapéutico , Probióticos/farmacología , Tiorredoxinas/metabolismo , Tiorredoxinas/genéticaRESUMEN
A diverse array of fused [6-6-5] tricyclic heterocycles has been synthesized via the dimerization and dearomative cyclization of benzene derivatives under visible light irradiation. The initiation of the cascade process is likely from aryloxy radicals, engendered through proton-coupled electron transfer by the photoexcited vinylidene ortho-quinone methide (VQM) and a Brønsted base.
RESUMEN
BACKGROUND: Trigeminal neuralgia (TN) is the most severe type of neuropathic pain. The trigeminal ganglion (TG) is a crucial target for the pathogenesis and treatment of TN. The colony-stimulating factor 1 (CSF1) - colony-stimulating factor 1 receptor (CSF1R) pathway regulates lower limb pain development. However, the effect and mechanism of the CSF1-CSF1R pathway in TG on TN are unclear. METHODS: Partial transection of the infraorbital nerve (pT-ION) model was used to generate a mouse TN model. Mechanical and cold allodynia were used to measure pain behaviors. Pro-inflammatory factors (IL-6, TNF-a) were used to measure inflammatory responses in TG. PLX3397, an inhibitor of CSF1R, was applied to inhibit the CSF1-CSF1R pathway in TG. This pathway was activated in naïve mice by stereotactic injection of CSF1 into the TG. RESULTS: The TN model activated the CSF1-CSF1R pathway in the TG, leading to exacerbated mechanical and cold allodynia. TN activated inflammatory responses in the TG manifested as a significant increase in IL-6 and TNF-a levels. After using PLX3397 to inhibit CSF1R, CSF1R expression in the TG declined significantly. Inhibiting the CSF1-CSF1R pathway in the TG downregulated the expression of IL-6 and TNF-α to reduce allodynia-related behaviors. Finally, mechanical allodynia behaviors were exacerbated in naïve mice after activating the CSF1-CSF1R pathway in the TG. CONCLUSIONS: The CSF1-CSF1R pathway in the TG modulates TN by regulating neuroimmune responses. Our findings provide a theoretical basis for the development of treatments for TN in the TG.
Asunto(s)
Factor Estimulante de Colonias de Macrófagos , Neuralgia , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Neuralgia del Trigémino , Animales , Ratones , Aminopiridinas , Hiperalgesia , Interleucina-6/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Neuralgia/metabolismo , Pirroles , Proteínas Tirosina Quinasas Receptoras/metabolismo , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/patología , Neuralgia del Trigémino/metabolismo , Neuralgia del Trigémino/patología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismoRESUMEN
BACKGROUND: Postoperative sore throat (POST) is a common postoperative complication. COMPLICATION: Chewing gum can inhibit the growth of oral bacteria, cleanse, and lubricate the oral cavity, which can help reduce postoperative sore throat. We hypothesize that chewing gum before surgery could relieve POST. METHODS: Patients planned to undergo total thyroidectomy under general anesthesia with tracheal intubation were randomized to swallow saliva twice or chew 1.4 g/2.8 g of gum for 2 minutes before surgery. A standard anesthesia protocol was performed. The numerical rating scale scores of POST at 1, 24, and 48 h after surgery were collected. The primary outcome was the incidence of moderate/severe POST (numerical rating scale score >3) within 48 h. RESULTS: Data from 148 patients (control group, n = 50; 1.4 g group, n = 48; and 2.8 g group, n = 50) were included in the analysis. Within 48 h, there was a significant difference among the three groups in the incidence of moderate/severe POST (control group: 74% vs. 1.4 g group: 65% vs. 2.8 g group: 50%. P = 0.04). The 2.8 g group had less incidence of moderate/severe POST than the control group (Odds Ratio = 0.351 95% Confidence Interval: (0.152 and 0.814) P = 0.02). CONCLUSION: Chewing 2.8 g gum before total thyroidectomy can reduce the incidence of moderate/severe POST within 48 h after surgery.
Asunto(s)
Goma de Mascar , Faringitis , Humanos , Tiroidectomía/efectos adversos , Faringitis/etiología , Faringitis/prevención & control , Faringitis/epidemiología , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Anestesia General , Intubación Intratraqueal/efectos adversosRESUMEN
PURPOSE: To determine factors associated with visual and anatomic outcomes of suprachoroidal hemorrhage in studies published between 1990 and 2022. METHODS: Individual participant data systematic review. The protocol was prospectively registered on Open Science Framework ( https://osf.io/69v3q/ ). PubMed, EMBASE, Web of Science, and Google Scholar were searched for peer-reviewed studies of suprachoroidal hemorrhage with ≥3 patients published between January 1, 1990, and September 1, 2022. The primary outcome was the change in logarithm of the minimum angle of resolution visual acuity from the time of suprachoroidal hemorrhage diagnosis to last follow-up. RESULTS: Four hundred thirteen eyes from 49 studies were included, with mean (SD) age 60.8 (22.4) years and mean (SD) follow-up of 13.8 (12.6) months. Among 145 eyes with at least 6 months of follow-up, the mean (SD) gain in visual acuity was -0.98 (0.89) logarithm of the minimum angle of resolution. In multivariable regression, treatment with systemic steroids was associated with greater improvement in logarithm of the minimum angle of resolution visual acuity (adjusted mean [SE] -1.29 [0.09] vs. -0.16 [0.30] for no systemic steroids; P < 0.001) and greater odds of achieving anatomic success (adjusted OR 10.59, 95% confidence interval 2.59-43.3; P = 0.001). CONCLUSION: The use of systemic steroids was associated with better visual and anatomic outcomes for suprachoroidal hemorrhage.
Asunto(s)
Hemorragia de la Coroides , Agudeza Visual , Humanos , Agudeza Visual/fisiología , Hemorragia de la Coroides/diagnóstico , Hemorragia de la Coroides/etiología , Glucocorticoides/uso terapéutico , Glucocorticoides/administración & dosificación , FemeninoRESUMEN
Although immunotherapy is a valuable treatment for gastric cancer (GC), identifying the patients who would benefit most from this approach presents a challenge. In this study, GC patients were divided into two subtypes by consensus clustering according to T cell-mediated tumor killing related genes (TTKRGs), and there were significant differences in tumor-infiltrating immune cells, signaling pathways, and gene expression of immunomodulators and inhibitory immune checkpoints between the two subtypes. Then, we developed an individualized signature based on TTKRGs, and its clinical and predictive value in GC patients for chemotherapeutic and immunotherapeutic responses was assessed. We confirmed the expression levels of signature genes in GC tumor tissue using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, to improve the accuracy of GC prognosis predictions, we established a nomogram. We further identified some compounds as sensitive drugs targeting GC risk groups. The signature showed significant predictive ability across RNA-seq, microarray, and qRT-PCR cohorts, which could assist in predicting survival, immunotherapeutic and chemotherapeutic outcomes in GC patients.
Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Pronóstico , Linfocitos T , Análisis por Conglomerados , RNA-SeqRESUMEN
Multiple evidence has supported that air pollution exposure has detrimental effects on the cardiovascular and respiratory systems. However, most investigations focus on the general population, with limited research conducted on medically insured populations. To address this gap, the current research was designed to examine the acute effects of inhalable particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), ground-level ozone (O3), and sulfur dioxide (SO2) on the incidence of upper respiratory tract infections (URTI), utilizing medical insurance data in Wuhan, China. Data on URTI were collected from the China Medical Insurance Basic Database for Wuhan covering the period from 2014 to 2018, while air pollutant data was gathered from ten national monitoring stations situated in Wuhan city. Statistical analysis was performed using generalized additive models for quasi-Poisson distribution with a log link function. The analysis indicated that except for ozone, higher exposure to four other pollutants (NO2, SO2, PM2.5, and PM10) were significantly linked to an elevated risk of URTI, particularly during the previous 0-3 days and previous 0-4 days. Additionally, NO2 and SO2 were found to be positively linked with laryngitis. Furthermore, the effects of air pollutants on the risk of URTI were more pronounced during cold seasons than hot seasons. Notably, females and the employed population were more susceptible to infection than males and non-employed individuals. Our findings gave solid proof of the link between ambient air pollution exposure and the risk of URTI in medically insured populations.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado , Infecciones del Sistema Respiratorio , Dióxido de Azufre , Humanos , China/epidemiología , Femenino , Masculino , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/efectos adversos , Persona de Mediana Edad , Material Particulado/análisis , Adulto , Infecciones del Sistema Respiratorio/epidemiología , Dióxido de Azufre/análisis , Anciano , Adolescente , Adulto Joven , Ozono/análisis , Ozono/efectos adversos , Niño , Preescolar , Seguro de Salud/estadística & datos numéricos , Dióxido de Nitrógeno/análisis , Lactante , Estaciones del Año , Recién Nacido , Incidencia , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/efectos adversosRESUMEN
Antioxidants are substances that have the ability to resist or delay oxidative damage. Antioxidants can be used not only for the diagnosis and prevention of vascular diseases, but also for food preservation and industrial production. However, due to the excessive use of antioxidants, it can cause environmental pollution and endanger human health. It can be seen that the development of antioxidant detection technology is important for environment/health maintenance. It is found that traditional detection methods, including high performance liquid chromatography, gas chromatography, etc., have shortcomings such as cumbersome operation and high cost. In contrast, the nanozyme-based detection method features advantages of low cost, simple operation, and rapidity, which has been widely used in the detection of various substances such as glucose and antioxidants. This article focuses on the latest research progress of nanozymes for antioxidant detection. Nanozymes for antioxidant detection are classified according to enzyme-like types. Different types of nanozyme-based sensing strategies and detection devices are summarized. Based on the summary and analysis, one can find that the development of commercial nanozyme-based devices for the practical detection of antioxidants is still challenging. Some emerging technologies (such as artificial intelligence) should be fully utilized to improve the detection sensitivity and accuracy. This article aims to emphasize the application prospects of nanozymes in antioxidant detection and to provide new ideas and inspiration for the development of detection methods.
Asunto(s)
Antioxidantes , Técnicas Biosensibles , Antioxidantes/análisis , Técnicas Biosensibles/métodos , Humanos , Nanoestructuras/química , Enzimas/químicaRESUMEN
An accurate calculation of the indicator diagram of a pumping unit is the key factor in analyzing the performance of an oilfield production and operation and in preparing and optimizing an oilfield development plan. Aiming at the problems of the poor stability of the conventional load-displacement sensor method and the wave equation method, owing to the influence of an alternating load on the force sensor and the difficulty in measuring the crank angle using the electrical parameter method, a new soft sensing method employing the input electrical parameters of the motor and the beam inclination has been proposed to obtain the indicator diagram. At first, this method is established based on the beam angle of the pumping unit, which is easily measured using the suspension point displacement mathematics calculation model and the torque factor. Subsequently, the electric motor input parameters, the parameters of the four-bar linkage, and the relationship between the polished rod load have been established. Finally, the motor and the beam angle of the measured electrical parameters have been substituted into the calculation of the suspension point displacement and load value and pull in accordance with the guidelines to eliminate the singularity mutation values. After processing the measured data through a Butterworth filter, the indicator diagram is obtained. The results of the engineering experiment and application show that the average relative error of the method is less than 3.95%, and the maximum relative error remains within 2% for 6 months, which verifies the stability of the soft sensing method.
RESUMEN
Colorectal cancer (CRC) is related to gut microbiota dysbiosis, especially butyrate-producing bacteria reduction. Our previous study suggested that administration of Clostridium butyricum, a butyrate-producing bacterium, exerts a crucial effect against CRC, however the potential mechanism is not clear. We first found that methyltransferase-like 3 (METTL3) showed a positive correlation with proliferation, epithelial-mesenchymal transition (EMT), DNA repair, metastasis, and invasion in a database analysis. The expression of METTL3 gradually increased from human normal colon tissue, to adenoma, and carcinoma, and was positively correlated with E-cadherin and CD34 levels. Overexpression of METTL3 promoted the proliferation, migration, and invasion of CRC cells and induced vasculogenic mimicry (VM) formation. Clostridium butyricum could downregulate METTL3 expression in CRC cells and decrease the expression of vimentin and vascular endothelial growth factor receptor 2 to reduce EMT and VM formation. Clostridium butyricum alleviated the pro-oncogenic effect of METTL3 overexpressing plasmid in CRC cells. The anti-EMT effect on METTL3 reduction of C. butyricum could be blunted by knocking down G-protein coupled receptor 43. Moreover, C. butyricum prevented EMT and VM and inhibited tumor metastasis in nude mice. Accordingly, C. butyricum could inhibit EMT and VM formation of intestinal carcinogenesis through downregulating METTL3. These findings broaden our understanding of probiotics supplement in CRC prevention and treatment.