Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunol Rev ; 321(1): 181-198, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37403660

RESUMEN

Immunogenic cell death (ICD) is a special pattern of tumor cell death, enabling to elicit tumor-specific immune response via the release of damage-associated molecular patterns and tumor-associated antigens in the tumor microenvironment. ICD-induced immunotherapy holds the promise for completely eliminating tumors and long-term protective antitumor immune response. Increasing ICD inducers have been discovered for boosting antitumor immunity via evoking ICD. Nonetheless, the utilization of ICD inducers remains insufficient owing to serious toxic reactions, low localization efficiency within the tumor microenvironmental niche, etc. For overcoming such limitations, stimuli-responsive multifunctional nanoparticles or nanocomposites with ICD inducers have been developed for improving immunotherapeutic efficiency via lowering toxicity, which represent a prospective scheme for fostering the utilization of ICD inducers in immunotherapy. This review outlines the advances in near-infrared (NIR)-, pH-, redox-, pH- and redox-, or NIR- and tumor microenvironment-responsive nanodelivery systems for ICD induction. Furthermore, we discuss their clinical translational potential. The progress of stimuli-responsive nanoparticles in clinical settings depends upon the development of biologically safer drugs tailored to patient needs. Moreover, an in-depth comprehending of ICD biomarkers, immunosuppressive microenvironment, and ICD inducers may accelerate the advance in smarter multifunctional nanodelivery systems to further amplify ICD.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Sistema de Administración de Fármacos con Nanopartículas , Muerte Celular Inmunogénica , Estudios Prospectivos , Antineoplásicos/uso terapéutico , Inmunoterapia , Microambiente Tumoral
2.
BMC Cancer ; 24(1): 570, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714987

RESUMEN

BACKGROUND: Gastric cancer (GC) is one of the most prevalent malignant tumors worldwide and is associated with high morbidity and mortality rates. However, the specific biomarkers used to predict the postoperative prognosis of patients with gastric cancer remain unknown. Recent research has shown that the tumor microenvironment (TME) has an increasingly positive effect on anti-tumor activity. This study aims to build signatures to study the effect of certain genes on gastric cancer. METHODS: Expression profiles of 37 T cell-related genes and their TME characteristics were comprehensively analyzed. A risk signature was constructed and validated based on the screened T cell-related genes, and the roles of hub genes in GC were experimentally validated. RESULTS: A novel T cell-related gene signature was constructed based on CD5, ABCA8, SERPINE2, ESM1, SERPINA5, and NMU. The high-risk group indicated lower overall survival (OS), poorer immune efficacy, and higher drug resistance, with SERPINE2 promoting GC cell proliferation, according to experiments. SERPINE2 and CXCL12 were significantly correlated, indicating poor OS via the Youjiang cohort. CONCLUSIONS: This study identified T cell-related genes in patients with stomach adenocarcinoma (STAD) for prognosis estimation and proposed potential immunotherapeutic targets for STAD.


Asunto(s)
Adenocarcinoma , Biomarcadores de Tumor , Neoplasias Gástricas , Microambiente Tumoral , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Neoplasias Gástricas/mortalidad , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Pronóstico , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Linfocitos T Reguladores/inmunología , Perfilación de la Expresión Génica , Masculino , Femenino
3.
J Nanobiotechnology ; 22(1): 13, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38167034

RESUMEN

In recent years, the environmental health issue of microplastics has aroused an increasingly significant concern. Some studies suggested that exposure to polystyrene microplastics (PS-MPs) may lead to renal inflammation and oxidative stress in animals. However, little is known about the essential effects of PS-MPs with high-fat diet (HFD) on renal development and microenvironment. In this study, we provided the single-cell transcriptomic landscape of the kidney microenvironment induced by PS-MPs and HFD in mouse models by unbiased single-cell RNA sequencing (scRNA-seq). The kidney injury cell atlases in mice were evaluated after continued PS-MPs exposure, or HFD treated for 35 days. Results showed that PS-MPs plus HFD treatment aggravated the kidney injury and profibrotic microenvironment, reshaping mouse kidney cellular components. First, we found that PS-MPs plus HFD treatment acted on extracellular matrix organization of renal epithelial cells, specifically the proximal and distal convoluted tubule cells, to inhibit renal development and induce ROS-driven carcinogenesis. Second, PS-MPs plus HFD treatment induced activated PI3K-Akt, MAPK, and IL-17 signaling pathways in endothelial cells. Besides, PS-MPs plus HFD treatment markedly increased the proportions of CD8+ effector T cells and proliferating T cells. Notably, mononuclear phagocytes exhibited substantial remodeling and enriched in oxidative phosphorylation and chemical carcinogenesis pathways after PS-MPs plus HFD treatment, typified by alterations tissue-resident M2-like PF4+ macrophages. Multispectral immunofluorescence and immunohistochemistry identified PF4+ macrophages in clear cell renal cell carcinoma (ccRCC) and adjacent normal tissues, indicating that activate PF4+ macrophages might regulate the profibrotic and pro-tumorigenic microenvironment after renal injury. In conclusion, this study first systematically revealed molecular variation of renal cells and immune cells in mice kidney microenvironment induced by PS-MPs and HFD with the scRNA-seq approach, which provided a molecular basis for decoding the effects of PS-MPs on genitourinary injury and understanding their potential profibrotic and carcinogenesis in mammals.


Asunto(s)
Microplásticos , Poliestirenos , Ratones , Animales , Microplásticos/toxicidad , Plásticos , Análisis de Expresión Génica de una Sola Célula , Dieta Alta en Grasa/efectos adversos , Células Endoteliales , Fosfatidilinositol 3-Quinasas , Riñón , Carcinogénesis , Mamíferos , Microambiente Tumoral
4.
Ecotoxicol Environ Saf ; 277: 116372, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669875

RESUMEN

Environmental pollution, including air pollution, plastic contamination, and heavy metal exposure, is a pressing global issue. This crisis contributes significantly to pollution-related diseases and is a critical risk factor for chronic health conditions, including cancer. Mounting evidence underscores the pivotal role of N6-methyladenosine (m6A) as a crucial regulatory mechanism in pathological processes and cancer progression. Governed by m6A writers, erasers, and readers, m6A orchestrates alterations in target gene expression, consequently playing a vital role in a spectrum of RNA processes, covering mRNA processing, translation, degradation, splicing, nuclear export, and folding. Thus, there is a growing need to pinpoint specific m6A-regulated targets in environmental pollutant-induced carcinogenesis, an emerging area of research in cancer prevention. This review consolidates the understanding of m6A modification in environmental pollutant-induced tumorigenesis, explicitly examining its implications in lung, skin, and bladder cancer. We also investigate the biological mechanisms that underlie carcinogenesis originating from pollution. Specific m6A methylation pathways, such as the HIF1A/METTL3/IGF2BP3/BIRC5 network, METTL3/YTHDF1-mediated m6A modification of IL 24, METTL3/YTHDF2 dynamically catalyzed m6A modification of AKT1, METTL3-mediated m6A-modified oxidative stress, METTL16-mediated m6A modification, site-specific ATG13 methylation-mediated autophagy, and the role of m6A in up-regulating ribosome biogenesis, all come into play in this intricate process. Furthermore, we discuss the direction regarding the interplay between pollutants and RNA metabolism, particularly in immune response, providing new information on RNA modifications for future exploration.


Asunto(s)
Adenosina , Carcinogénesis , Contaminantes Ambientales , Animales , Humanos , Adenosina/análogos & derivados , Carcinogénesis/inducido químicamente , Contaminantes Ambientales/toxicidad , ARN/genética , Metilación de ARN
5.
Int J Cancer ; 152(1): 66-78, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35579992

RESUMEN

In clear cell renal cell carcinoma (ccRCC), glycolysis is enhanced mainly because of the increased expression of key enzymes in glycolysis. Hence, the discovery of new molecular biomarkers for glycolysis may help guide and establish a precise system of diagnosis and treatment for ccRCC. Expression profiles of 1079 tumor samples of ccRCC patients (including 311 patients treated with everolimus or nivolumab) were downloaded from public databases. Proteomic profiles of 232 ccRCC samples were obtained from Fudan University Shanghai Cancer Center (FUSCC). Biological changes, tumor microenvironment and prognostic differences were explored between samples with various glycolysis characteristics. There were significant differences in CD8+ effector T cells, epithelial-to-mesenchymal transition and pan-fibroblast TGFb between the Low and High glyScore groups. The tumor mutation burden of the Low glyScore group was lower than that of the High glyScore group. And higher glyScore was significantly associated with worse overall survival (OS) in 768 ccRCC patients (P < .0001). External validation in FUSCC cohort also indicated that glyScore was of strong ability for predicting OS (P < .05). GlyScore may serve as a biomarker for predicting everolimus response in ccRCC patients due to its significant associations with progression-free survival (PFS). And glyScore may also predict overall survival in patients treated with nivolumab. We calculated the glyScore in ccRCC and the defined glyScore was of strong ability for predicting OS. In addition, glyScore may also serve as a biomarker for predicting PFS in patients treated with everolimus and could predict OS in patients treated with nivolumab.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/diagnóstico , Nivolumab , Everolimus/uso terapéutico , Proteómica , China , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Glucólisis , Microambiente Tumoral
6.
Cancer Immunol Immunother ; 71(8): 1923-1935, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35043231

RESUMEN

BACKGROUND: The tumor microenvironment (TME) and tertiary lymphoid structures (TLS) affect the occurrence and development of cancers. How the immune contexture interacts with the phenotype of clear cell renal cell carcinoma (ccRCC) remains unclear. METHODS: We identified and evaluated TLS clusters in ccRCC using machine learning algorithms and the 12-chemokine gene signature for TLS. Analyses for functional enrichment, DNA variation, immune cell distribution, association with independent clinicopathological features and predictive value of CXCL13 in ccRCC were performed. RESULTS: We found a prominently enrichment of the 12-chemokine gene signature for TLS in patients with ccRCC compared with other types of renal cell carcinoma. We identified a prognostic value of CCL4, CCL5, CCL8, CCL19 and CXCL13 expression in ccRCC. DNA deletion of the TLS gene signature significantly predicted poor outcome in ccRCC compared with amplification and wild-type gene signature. We established TLS clusters (C1-4) and observed distinct differences in survival, stem cell-like characteristics, immune cell distribution, response to immunotherapies and VEGF-targeted therapies among the clusters. We found that elevated CXCL13 expression significantly predicted aggressive progression and poor prognosis in 232 patients with ccRCC in a real-world validation cohort. CONCLUSION: This study described a 12-chemokine gene signature for TLS in ccRCC and established TLS clusters that reflected different TME immune status and corresponded to prognosis of ccRCC. We confirmed the dense presence of TILs aggregation and TLS in ccRCC and demonstrated an oncogenic role of CXCL13 expression of ccRCC, which help develop immunotherapies and provide novel insights on the long-term management of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Estructuras Linfoides Terciarias , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/patología , ADN , Humanos , Neoplasias Renales/patología , Pronóstico , Microambiente Tumoral
7.
BMC Cancer ; 22(1): 729, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35788194

RESUMEN

BACKGROUND: Glioblastoma is one of the most common brain cancers in adults, and is characterized by recurrence and little curative effect. An effective treatment for glioblastoma patients remains elusive worldwide. 7-methylguanosine (m7G) is a common RNA modification, and its role in tumors has become a research hotspot. METHODS: By searching for differentially expressed genes related to m7G, we generated a prognostic signature via cluster analysis and established classification criteria of high and low risk scores. The effectiveness of classification was validated using the Non-negative matrix factorization (NMF) algorithm, and repeatedly verified using training and test groups. The dimension reduction method was used to clearly show the difference and clinical significance of the data. All analyses were performed via R (version 4.1.2). RESULTS: According to the signature that included four genes (TMOD2, CACNG2, PLOD3, and TMSB10), glioblastoma patients were divided into high and low risk score groups. The survival rates between the two groups were significantly different, and the predictive abilities for 1-, 3-, and 5-year survivals were effective. We further established a Nomogram model to further examine the signature,as well as other clinical factors, with remaining significant results. Our signature can act as an independent prognostic factor related to immune-related processes in glioblastoma. CONCLUSIONS: Our research addresses the gap in knowledge in the m7G and glioblastoma research fields. The establishment of a prognostic signature and the extended analysis of the tumor microenvironment, immune correlation, and tumor mutation burden further suggest the important role of m7G in the development and development of this disease. This work will provide support for future research.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/genética , Biología Computacional , Metilación de ADN , Glioblastoma/patología , Humanos , Microambiente Tumoral/genética
8.
J Cell Mol Med ; 24(16): 9012-9027, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32567187

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common and highly malignant pathological type of kidney cancer. We sought to establish a metabolic signature to improve post-operative risk stratification and identify novel targets in the prediction models for ccRCC patients. A total of 58 metabolic differential expressed genes (MDEGs) were identified with significant prognostic value. LASSO regression analysis constructed 20-mRNA signatures models, metabolic prediction models (MPMs), in ccRCC patients from two cohorts. Risk score of MPMs significantly predicts prognosis for ccRCC patients in TCGA (P < 0.001, HR = 3.131, AUC = 0.768) and CPTAC cohorts (P = 0.046, HR = 2.893, AUC = 0.777). In addition, G6PC, a hub gene in PPI network of MPMs, shows significantly prognostic value in 718 ccRCC patients from multiply cohorts. Next, G6Pase was detected high expressed in normal kidney tissues than ccRCC tissues. It suggested that low G6Pase expression significantly correlated with poor prognosis (P < 0.0001, HR = 0.316) and aggressive progression (P < 0.0001, HR = 0.414) in 322 ccRCC patients from FUSCC cohort. Meanwhile, promoter methylation level of G6PC was significantly higher in ccRCC samples with aggressive progression status. G6PC significantly participates in abnormal immune infiltration of ccRCC microenvironment, showing significantly negative association with check-point immune signatures, dendritic cells, Th1 cells, etc. In conclusion, this study first provided the opportunity to comprehensively elucidate the prognostic MDEGs landscape, established novel prognostic model MPMs using large-scale ccRCC transcriptome data and identified G6PC as potential prognostic target in 1,040 ccRCC patients from multiply cohorts. These finding could assist in managing risk assessment and shed valuable insights into treatment strategies of ccRCC.


Asunto(s)
Carcinoma de Células Renales/genética , Glucosa-6-Fosfatasa/genética , Neoplasias Renales/genética , Transcriptoma/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/patología , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Riñón/patología , Neoplasias Renales/patología , Masculino , Pronóstico , Microambiente Tumoral/inmunología
9.
J Cell Physiol ; 235(11): 8724-8735, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32324260

RESUMEN

Diabetic retinopathy (DR) is the most common ocular complication caused by diabetes mellitus and is the main cause of visual impairment in working-age people. Reactive gliosis and pro-inflammatory cytokine production by Müller cells contribute to the progression of DR. Melatonin is a strong anti-inflammatory hormone, mediating the cytoprotective effect of a variety of retinal cells against hyperglycemia. In this study, melatonin inhibited the gliosis activation and inflammatory cytokine production of Müller cells in both in vitro and in vivo models of DR. The melatonin membrane blocker, Luzindole, invalidated the melatonin-mediated protective effect on Müller cells. Furthermore, melatonin inhibited Müller cell activation and pro-inflammatory cytokine production by upregulating the long noncoding RNA maternally expressed gene 3/miR-204/sirtuin 1 axis. In conclusion, our study suggested that melatonin treatment could be a novel therapeutic strategy for DR.


Asunto(s)
Citocinas/efectos de los fármacos , Retinopatía Diabética/tratamiento farmacológico , Células Ependimogliales/efectos de los fármacos , Melatonina/uso terapéutico , ARN Largo no Codificante/genética , Animales , Apoptosis/efectos de los fármacos , Citocinas/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Retinopatía Diabética/metabolismo , Células Ependimogliales/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Inflamación/metabolismo , Ratones Endogámicos C57BL , Activación Transcripcional/genética
10.
Glycoconj J ; 32(9): 685-93, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26452604

RESUMEN

Accumulating evidences demonstrated that microglia activation and the autocrine loop of tumor necrosis factor-α (TNFα) greatly contribute to the pathogenesis of several CNS diseases. TNFα exerts its biological effects by interacting with two different receptors: TNF receptor 1 (TNFR1) and TNFR2. The classic proinflammatory activity of TNFα is mainly mediated by TNFR1. In the present study, we found that TNFR1 was modificated by N-glycosylation on Asn151 and Asn202 in microglia. The N-glycosylation of TNFR1 could facilitate its capability of binding to TNFα and further promote the formation of TNFα autocrine loop in microglia stimulated by TNFα, resulting in excessive microglia activation and CNS inflammation. All these processes were related to TNFR1-mediated NF-κB pathways. Elimination of N-glycosylation did not affect the subcellular transportation and cell surface localization of TNFR1, but suppressed ligand-binding affinity. These findings indicated that the N-glycosylation of TNFR1 played an important role during microglia activation in CNS inflammation. By this study, we aimed to provide some valuable experimental evidence for a better understanding of the significance of protein glycosylation in microglia inflammatory activation and CNS disease.


Asunto(s)
Microglía/metabolismo , Procesamiento Proteico-Postraduccional , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Animales , Glicosilación , Células HEK293 , Humanos , Ratones , FN-kappa B/metabolismo , Unión Proteica , Transporte de Proteínas , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA