Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 607, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704801

RESUMEN

BACKGROUND: Intracerebral hemorrhage (ICH) is a critical neurological condition with few treatment options, where secondary immune responses and specific cell death forms, like pyroptosis, worsen brain damage. Pyroptosis involves gasdermin-mediated membrane pores, increasing inflammation and neural harm, with the NLRP3/Caspase-1/GSDMD pathway being central to this process. Peroxiredoxin II (Prx II), recognized for its mitochondrial protection and reactive oxygen species (ROS) scavenging abilities, appears as a promising neuronal pyroptosis modulator. However, its exact role and action mechanisms need clearer definition. This research aims to explore Prx II impact on neuronal pyroptosis and elucidate its mechanisms, especially regarding endoplasmic reticulum (ER) stress and oxidative stress-induced neuronal damage modulation. METHODS AND RESULTS: Utilizing MTT assays, Microscopy, Hoechst/PI staining, Western blotting, and immunofluorescence, we found Prx II effectively reduces LPS/ATP-induced pyroptosis and neuroinflammation in HT22 hippocampal neuronal cells. Our results indicate Prx II's neuroprotective actions are mediated through PI3K/AKT activation and ER stress pathway inhibition, diminishing mitochondrial dysfunction and decreasing neuronal pyroptosis through the ROS/MAPK/NF-κB pathway. These findings highlight Prx II potential therapeutic value in improving intracerebral hemorrhage outcomes by lessening secondary brain injury via critical signaling pathway modulation involved in neuronal pyroptosis. CONCLUSIONS: Our study not only underlines Prx II importance in neuroprotection but also opens new therapeutic intervention avenues in intracerebral hemorrhage, stressing the complex interplay between redox regulation, ER stress, and mitochondrial dynamics in neuroinflammation and cell death management.


Asunto(s)
Estrés del Retículo Endoplásmico , Estrés Oxidativo , Peroxirredoxinas , Piroptosis , Animales , Ratones , Línea Celular , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/complicaciones , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Peroxirredoxinas/metabolismo , Piroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
2.
Acta Pharmacol Sin ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570601

RESUMEN

Morphine and morphine-6-glucuronide (M6G) produce central nervous system (CNS) effects by activating mu-opioid receptors, while naloxone is used mainly for the reversal of opioid overdose, specifically for the fatal complication of respiratory depression, but also for alleviating opioid-induced side effects. In this study we developed a physiologically-based pharmacokinetic-pharmacodynamic (PBPK-PD) model to simultaneously predict pharmacokinetics and CNS effects (miosis, respiratory depression and analgesia) of morphine as well as antagonistic effects of naloxone against morphine. The pharmacokinetic and pharmacodynamic parameters were obtained from in vitro data, in silico, or animals. Pharmacokinetic and pharmacodynamic simulations were conducted using 39 and 36 clinical reports, respectively. The pharmacokinetics of morphine and M6G following oral or intravenous administration were simulated, and the PBPK-PD model was validated using clinical observations. The Emax model correlated CNS effects with free concentrations of morphine and M6G in brain parenchyma. The predicted CNS effects were compared with observations. Most clinical observations fell within the 5th-95th percentiles of simulations based on 1000 virtual individuals. Most of the simulated area under the concentration-time curve or peak concentrations also fell within 0.5-2-fold of observations. The contribution of morphine to CNS effects following intravenous or oral administration was larger than that of M6G. Pharmacokinetics and antagonistic effects of naloxone on CNS effects were also successfully predicted using the developed PBPK-PD model. In conclusion, the pharmacokinetics and pharmacodynamics of morphine and M6G, antagonistic effects of naloxone against morphine-induced CNS effects may be successfully predicted using the developed PBPK-PD model based on the parameters derived from in vitro, in silico, or animal studies.

3.
Acta Pharmacol Sin ; 45(7): 1406-1424, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38589687

RESUMEN

Acute kidney injury (AKI) is often accompanied by uremic encephalopathy resulting from accumulation of uremic toxins in brain possibly due to impaired blood-brain barrier (BBB) function. Anionic uremic toxins are substrates or inhibitors of organic anionic transporters (OATs). In this study we investigated the CNS behaviors and expression/function of BBB OAT3 in AKI rats and mice, which received intraperitoneal injection of cisplatin 8 and 20 mg/kg, respectively. We showed that cisplatin treatment significantly inhibited the expressions of OAT3, synaptophysin and microtubule-associated protein 2 (MAP2), impaired locomotor and exploration activities, and increased accumulation of uremic toxins in the brain of AKI rats and mice. In vitro studies showed that uremic toxins neither alter OAT3 expression in human cerebral microvascular endothelial cells, nor synaptophysin and MAP2 expressions in human neuroblastoma (SH-SY5Y) cells. In contrast, tumour necrosis factor alpha (TNFα) and the conditioned medium (CM) from RAW264.7 cells treated with indoxyl sulfate (IS) significantly impaired OAT3 expression. TNFα and CM from IS-treated BV-2 cells also inhibited synaptophysin and MAP2 expressions in SH-SY5Y cells. The alterations caused by TNFα and CMs in vitro, and by AKI and TNFα in vivo were abolished by infliximab, a monoclonal antibody designed to intercept and neutralize TNFα, suggesting that AKI impaired the expressions of OAT3, synaptophysin and MAP2 in the brain via IS-induced TNFα release from macrophages or microglia (termed as IS-TNFα axis). Treatment of mice with TNFα (0.5 mg·kg-1·d-1, i.p. for 3 days) significantly increased p-p65 expression and reduced the expressions of Nrf2 and HO-1. Inhibiting NF-κB pathway, silencing p65, or activating Nrf2 and HO-1 obviously attenuated TNFα-induced downregulation of OAT3, synaptophysin and MAP2 expressions. Significantly increased p-p65 and decreased Nrf2 and HO-1 protein levels were also detected in brain of AKI mice and rats. We conclude that AKI inhibits the expressions of OAT3, synaptophysin and MAP2 due to IS-induced TNFα release from macrophages or microglia. TNFα impairs the expressions of OAT3, synaptophysin and MAP2 partly via activating NF-κB pathway and inhibiting Nrf2-HO-1 pathway.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Indicán , Factor de Necrosis Tumoral alfa , Animales , Lesión Renal Aguda/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Humanos , Ratones , Masculino , Células RAW 264.7 , Ratas , Ratones Endogámicos C57BL , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Ratas Sprague-Dawley , Sinaptofisina/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Uremia/metabolismo , Uremia/complicaciones , Línea Celular Tumoral
4.
Arch Toxicol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722348

RESUMEN

With advances in next-generation sequencing technology, there is growing evidence that the gut microbiome plays a key role in the host's innate and adaptive immune system. Gut microbes and their metabolites directly or indirectly regulate host immune cells. Crucially, dysregulation of the gut microbiota is often associated with many immune system diseases. In turn, microbes modulate disease immunotherapy. Data from preclinical to clinical studies suggest that the gut microbiota may influence the effectiveness of tumor immunotherapy, particularly immune checkpoint inhibitors (ICIs). In addition, the most critical issue now is a COVID-19 vaccine that generates strong and durable immunity. A growing number of clinical studies confirm the potential of gut microbes to enhance the efficacy of COVID-19 vaccines. However, it is still unclear how gut bacteria interact with immune cells and what treatments are based on gut microbes. Here, we outline recent advances in the effects and mechanisms of the gut microbiota and its metabolites (tryptophan metabolites, bile acids, short-chain fatty acids, and inosine) on different immune cells (dendritic cells, CD4+T cells, and macrophages). It also highlights innovative intervention strategies and clinical trials of microbiota-based checkpoint blocking therapies for tumor immunity, and ongoing efforts to maintain the long-term immunogenicity of COVID-19 vaccines. Finally, the challenges to be overcome in this area are discussed. These provide an important basis for further research and clinical translation of gut microbiota.

5.
Angew Chem Int Ed Engl ; 63(11): e202319850, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38273811

RESUMEN

In contrast with the well-established C(sp2 )-SCF3 cross-coupling to forge the Ar-SCF3 bond, the corresponding enantioselective coupling of readily available alkyl electrophiles to forge chiral C(sp3 )-SCF3 bond has remained largely unexplored. We herein disclose a copper-catalyzed enantioselective radical C(sp3 )-SCF3 coupling of a range of secondary/tertiary benzyl radicals with the easily available (Me4 N)SCF3 reagent. The key to the success lies in the utilization of chiral phosphino-oxazoline-derived anionic N,N,P-ligands through tuning electronic and steric effects for the simultaneous control of the reaction initiation and enantioselectivity. This strategy can successfully realize two types of asymmetric radical reactions, including enantioconvergent C(sp3 )-SCF3 cross-coupling of racemic benzyl halides and three-component 1,2-carbotrifluoromethylthiolation of arylated alkenes under mild reaction conditions. It therefore provides a highly flexible platform for the rapid assembly of an array of enantioenriched SCF3 -containing molecules of interest in organic synthesis and medicinal chemistry.

6.
Inflamm Res ; 72(9): 1839-1859, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37725102

RESUMEN

BACKGROUND: Neurodegenerative diseases are a common group of neurological disorders characterized by progressive loss of neuronal structure and function leading to cognitive impairment. Recent studies have shown that neuronal pyroptosis mediated by the NLRP3 inflammasome plays a crucial role in the pathogenesis of neurodegenerative diseases. OBJECTIVE AND METHOD: The NLRP3 inflammasome is a multiprotein complex that, when activated within cells, triggers an inflammatory response, ultimately leading to pyroptotic cell death of neurons. Pyroptosis is a typical pro-inflammatory programmed cell death process occurring downstream of NLRP3 inflammasome activation, characterized by the formation of pores on the cell membrane by the GSDMD protein, leading to cell lysis and the release of inflammatory factors. It has been found that NLRP3 inflammasome-mediated neuronal pyroptosis is closely associated with the development of various neurodegenerative diseases, such as Alzheimer's disease, traumatic brain injury, and Parkinson's disease. Therefore, inhibiting NLRP3 inflammasome activation and attenuating neuronal pyroptosis could potentially serve as novel strategies for the treatment of neurodegenerative diseases. RESULTS: The aim of this review is to explore the role of NLRP3 activation-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Firstly, we extensively discuss the relationship between NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in various neurodegenerative diseases. Subsequently, we further explore the mechanisms driving NLRP3 activation and assembly, as well as the post-translational modifications regulating NLRP3 inflammasome activation. CONCLUSION: Understanding these mechanisms will contribute to a deeper understanding of the link between neuronal pyroptosis and neurodegenerative diseases, and hold significant implications for the treatment and prevention of neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Piroptosis , Enfermedades Neuroinflamatorias , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Neuronas
7.
JAMA ; 329(8): 640-650, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36757755

RESUMEN

Importance: Previous studies suggested a benefit of argatroban plus alteplase (recombinant tissue-type plasminogen activator) in patients with acute ischemic stroke (AIS). However, robust evidence in trials with large sample sizes is lacking. Objective: To assess the efficacy of argatroban plus alteplase for AIS. Design, Setting, and Participants: This multicenter, open-label, blinded end point randomized clinical trial including 808 patients with AIS was conducted at 50 hospitals in China with enrollment from January 18, 2019, through October 30, 2021, and final follow-up on January 24, 2022. Interventions: Eligible patients were randomly assigned within 4.5 hours of symptom onset to the argatroban plus alteplase group (n = 402), which received intravenous argatroban (100 µg/kg bolus over 3-5 minutes followed by an infusion of 1.0 µg/kg per minute for 48 hours) within 1 hour after alteplase (0.9 mg/kg; maximum dose, 90 mg; 10% administered as 1-minute bolus, remaining infused over 1 hour), or alteplase alone group (n = 415), which received intravenous alteplase alone. Both groups received guideline-based treatments. Main Outcomes and Measures: The primary end point was excellent functional outcome, defined as a modified Rankin Scale score (range, 0 [no symptoms] to 6 [death]) of 0 to 1 at 90 days. All end points had blinded assessment and were analyzed on a full analysis set. Results: Among 817 eligible patients with AIS who were randomized (median [IQR] age, 65 [57-71] years; 238 [29.1%] women; median [IQR] National Institutes of Health Stroke Scale score, 9 [7-12]), 760 (93.0%) completed the trial. At 90 days, 210 of 329 participants (63.8%) in the argatroban plus alteplase group vs 238 of 367 (64.9%) in the alteplase alone group had an excellent functional outcome (risk difference, -1.0% [95% CI, -8.1% to 6.1%]; risk ratio, 0.98 [95% CI, 0.88-1.10]; P = .78). The percentages of participants with symptomatic intracranial hemorrhage, parenchymal hematoma type 2, and major systemic bleeding were 2.1% (8/383), 2.3% (9/383), and 0.3% (1/383), respectively, in the argatroban plus alteplase group and 1.8% (7/397), 2.5% (10/397), and 0.5% (2/397), respectively, in the alteplase alone group. Conclusions and Relevance: Among patients with acute ischemic stroke, treatment with argatroban plus intravenous alteplase compared with alteplase alone did not result in a significantly greater likelihood of excellent functional outcome at 90 days. Trial Registration: ClinicalTrials.gov Identifier: NCT03740958.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Femenino , Anciano , Masculino , Activador de Tejido Plasminógeno , Fibrinolíticos/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/inducido químicamente , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Resultado del Tratamiento
8.
Gastroenterology ; 160(4): 1179-1193.e14, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32920015

RESUMEN

BACKGROUND & AIMS: Streptococcus thermophilus was identified to be depleted in patients with colorectal cancer (CRC) by shotgun metagenomic sequencing of 526 multicohort fecal samples. Here, we aim to investigate whether this bacterium could act as a prophylactic for CRC prevention. METHODS: The antitumor effects of S thermophilus were assessed in cultured colonic epithelial cells and in 2 murine models of intestinal tumorigenesis. The tumor-suppressive protein produced by S thermophilus was identified by mass spectrometry and followed by ß-galactosidase activity assay. The mutant strain of S thermophilus was constructed by homologous recombination. The effect of S thermophilus on the gut microbiota composition was assessed by shotgun metagenomic sequencing. RESULTS: Oral gavage of S thermophilus significantly reduced tumor formation in both Apcmin/+ and azoxymethane-injected mice. Coincubation with S thermophilus or its conditioned medium decreased the proliferation of cultured CRC cells. ß-Galactosidase was identified as the critical protein produced by S thermophilus by mass spectrometry screening and ß-galactosidase activity assay. ß-Galactosidase secreted by S thermophilus inhibited cell proliferation, lowered colony formation, induced cell cycle arrest, and promoted apoptosis of cultured CRC cells and retarded the growth of CRC xenograft. The mutant S thermophilus without functional ß-galactosidase lost its tumor-suppressive effect. Also, S thermophilus increased the gut abundance of known probiotics, including Bifidobacterium and Lactobacillus via ß-galactosidase. ß-Galactosidase-dependent production of galactose interfered with energy homeostasis to activate oxidative phosphorylation and downregulate the Hippo pathway kinases, which partially mediated the anticancer effects of S thermophilus. CONCLUSION: S thermophilus is a novel prophylactic for CRC prevention in mice. The tumor-suppressive effect of S thermophilus is mediated at least by the secretion of ß-galactosidase.


Asunto(s)
Proteínas Bacterianas/metabolismo , Neoplasias Colorrectales/prevención & control , Probióticos/administración & dosificación , Streptococcus thermophilus/enzimología , beta-Galactosidasa/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Azoximetano/administración & dosificación , Azoximetano/toxicidad , Proteínas Bacterianas/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/inducido químicamente , Colon/microbiología , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología , Humanos , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Transgénicos , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/genética , Neoplasias Experimentales/microbiología , Neoplasias Experimentales/prevención & control , Probióticos/metabolismo , Streptococcus thermophilus/genética , beta-Galactosidasa/genética
9.
Am J Pathol ; 191(2): 385-395, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33321090

RESUMEN

Insulin-induced gene 2 (INSIG2) functions as a blocker of cholesterol biosynthesis and has been shown to be involved in colon and pancreatic cancer pathogenesis. Cholesterol is a risk factor for breast cancer pathophysiology; however, the underlying mechanisms are not well-defined. Hence, our goal was to determine the role of INISG2 in breast cancer. INSIG2 mRNA and protein expression was correlated to metastatic potential of breast cancer cell lines. Knockdown of INSIG2 inhibited epithelial-to-mesenchymal transition. Conversely, overexpression of INSIG2 induced epithelial-to-mesenchymal transition. Knockdown of INSIG2 did not affect cell proliferation but resulted in altered metabolism in vitro and attenuated experimental metastasis in vivo. Analysis of breast cancer tissue microarrays revealed significantly higher INSIG2 protein expression in breast cancer tissues. INSIG2 protein expression was correlated to hormone receptor status, with significantly higher expression in patients with triple-negative and human epidermal growth factor receptor 2 molecular subtypes of invasive breast cancer. Analysis of The Cancer Genome Atlas, however, revealed significantly lower INSIG2 mRNA expression in triple-negative breast cancer patients. Higher INSIG2 mRNA expression was correlated to poor survival probability. Asian patients with high INSIG2 mRNA expression had significantly lower survival probability compared with Asian patients with low/medium INSIG2 mRNA expression. These results reveal a yet undefined role of INSIG2 in breast cancer, potentially more relevant for breast cancer patients in Asia.


Asunto(s)
Neoplasias de la Mama/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Metástasis de la Neoplasia/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Metástasis de la Neoplasia/patología
10.
Arch Microbiol ; 204(8): 529, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35900598

RESUMEN

A rod-shaped, Gram-negative staining strain, FBM22T, was isolated from a microbial fermentation bed substrate from a pig farm. Its colonies appeared yellow and were 0.5-1.2 mm in diameter. Cells were 0.3-0.5 µm wide, 0.5-0.83 µm long. Optimal growth occurred at 30 °C and pH 7.0-8.0; NaCl was not required for growth. The strain performed denitrification and nitrate reduction functions. And it could produce catalase. FBM22-1T utilized the following organic substrates for growth: tyrosine, glutamic acid, D-glucose, and galactose. The novel isolate could degrade 2-nitropropane as carbon and nitrogen source. The dominant respiratory quinone was Q-10. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine and phosphatidylethanolamine. C18:1 ω7c, C16:1 ω7c and/ or C16:1 ω6c, and C14:0 2-OH were the major (≥ 8%) fatty acids. The G+C content was 56.8 mol%. FBM22T was found to be a member of the genus Sphingopyxis in the family Sphingomonadaceae of the class Alphaproteobacteria. It had the highest sequence similarity with the type strains Sphingopyxis terrae subsp. ummariensis UI2T (96.47%) and Sphingopyxis terrae subsp. terrae NBRC 15098T (96.40%). Furthermore, FBM22T had 18.7% and 18.4% relatedness (based on digital DNA-DNA hybridization) with its two relatives (S. terrae subsp. ummariensis UI2T and S. terrae subsp. terrae NBRC 15098T). The morphological, physiological, and genotypic differences identified in this study support the classification of FBM22T as a novel species within the genus Sphingopyxis, for which the name Sphingopyxis yananensis sp. nov. is proposed. The type strain is FBM22T (= KCTC 82290T = CCTC AB2020286T).


Asunto(s)
Sphingomonadaceae , Animales , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fermentación , Nitroparafinas , Fosfolípidos/química , Filogenia , Propano/análogos & derivados , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Porcinos
11.
Acta Pharmacol Sin ; 43(6): 1441-1452, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34417575

RESUMEN

Diabetes is often associated with vitamin A disorders. All-trans retinoic acid (ATRA) is the main active constituent of vitamin A. We aimed to investigate whether ATRA influences diabetic progression and its mechanisms using both Goto-Kazizazi (GK) rats and INS-1 cells. Rat experiments demonstrated that ATRA treatment worsened diabetes symptoms, as evidenced by an increase in fasting blood glucose (FBG) levels and impairment of glucose homeostasis. Importantly, ATRA impaired glucose-stimulated insulin secretion (GSIS) and increased the expression of sterol regulatory element-binding protein 1c (SREBP-1c) and uncoupling protein 2 (UCP2) in the rat pancreas. Data from INS-1 cells also showed that ATRA upregulated SREBP-1c and UCP2 expression and impaired GSIS at 23 mM glucose. Srebp-1c or Ucp2 silencing attenuated GSIS impairment by reversing the ATRA-induced increase in UCP2 expression and decrease in ATP content. ATRA and the retinoid X receptor (RXR) agonists 9-cis RA and LG100268 induced the gene expression of Srebp-1c, which was almost completely abolished by the RXR antagonist HX531. RXRα-LBD luciferase reporter plasmid experiments also demonstrated that ATRA concentration-dependently activated RXRα, the EC50 of which was 1.37 µM, which was lower than the ATRA concentration in the pancreas of GK rats treated with a high dose of ATRA (approximately 3 µM), inferring that ATRA can upregulate Srebp-1c expression in the pancreas by activating RXR. In conclusion, ATRA impaired GSIS partly by activating the RXR/SREBP-1c/UCP2 pathway, thus worsening diabetic symptoms. The results highlight the roles of ATRA in diabetic progression and establish new strategies for diabetes treatment.


Asunto(s)
Glucosa , Vitamina A , Animales , Glucosa/farmacología , Insulina/metabolismo , Secreción de Insulina , Ratas , Receptores X Retinoide/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Tretinoina/farmacología , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Vitamina A/metabolismo
12.
J Bioenerg Biomembr ; 53(1): 49-59, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33405048

RESUMEN

Glioblastoma (GBM) is one of the most lethal tumor of all human cancers. Due to its poor response to chemotherapy and radiotherapy as well as its high rate of recurrence after treatment, the treatment is still undesired. The identification of potential related genes and bio-markers in the development of GBM could provide some new targets for the treatment of GBM. Our purpose in this study was to evaluate the mission of COL8A2 in GBM. Combined with TCGA, Oncomine databases, CGGA, GEPIA website and qRT-PCR analyses, we found that COL8A2 was up-regulated both in GBM tissues and cells compared to the controls. Moreover, the high COL8A2 expression was associated with the shorter overall survival of patients with GBM. The expression of COL8A2 was also positively correlated with metastasis-associated genes including vimentin, snail, slug, MMP2 and MMP7 according to GEPIA website. Knockdown of COL8A2 could suppress the cell proliferation, cell migration and invasion, whereas the overexpression of COL8A2 significantly expedited these processes. What's more, the outcome of western blot analysis manifested that COL8A2 could induced the expression of vimentin, snail, slug, MMP2 and MMP7. Taken together, COL8A2 activated cell proliferation, cell migration and invasion via raising the relative expression of EMT-related proteins in GBM. Therefore, our investigation suggests the oncogenic role of COL8A2 in GBM and provides a potential application of COL8A2 for GBM therapy.


Asunto(s)
Membrana Basal/metabolismo , Neoplasias Encefálicas/metabolismo , Colágeno Tipo VIII/metabolismo , Endotelio Corneal/metabolismo , Glioblastoma/metabolismo , Membrana Basal/patología , Neoplasias Encefálicas/patología , Endotelio Corneal/patología , Transición Epitelial-Mesenquimal , Glioblastoma/patología , Humanos , Transfección
13.
FASEB J ; 34(3): 4234-4252, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31961009

RESUMEN

Fragility fractures are related to the loss of bone integrity and deteriorated morphology of osteocytes. Our previous studies have reported that low-magnitude high-frequency vibration (LMHFV) promoted osteoporotic fracture healing. As osteocytes are known for mechanosensing and initiating bone repair, we hypothesized that LMHFV could enhance osteoporotic fracture healing through enhancing morphological changes in the osteocyte lacuna-canalicular network (LCN) and mineralization. A metaphyseal fracture model was established in female Sprague-Dawley rats to investigate changes in osteocytes and healing outcomes from early to late phase post-fracture. Our results showed that the LCN exhibited an exuberant outgrowth of canaliculi in the osteoporotic fractured bone at day 14 after LMHFV. LMHFV upregulated the E11, dentin matrix protein 1 (DMP1), and fibroblast growth factor 23 (FGF23), but downregulated sclerostin (Sost) in osteocytes. Moreover, LMHFV promoted mineralization with significant enhancements of Ca/P ratio, mineral apposition rate (MAR), mineralizing surface (MS/BS), and bone mineral density (BMD) in the osteoporotic group. Consistently, better healing was confirmed by microarchitecture and mechanical properties, whereas the enhancement in osteoporotic group was comparable or even greater than the normal group. This is the first report to reveal the enhancement effect of LMHFV on the osteocytes' morphology and functions in osteoporotic fracture healing.


Asunto(s)
Curación de Fractura/fisiología , Osteocitos/citología , Fracturas Osteoporóticas/terapia , Vibración/uso terapéutico , Animales , Densidad Ósea/fisiología , Femenino , Inmunohistoquímica , Pruebas Mecánicas , Microscopía Confocal , Microscopía Electrónica de Rastreo , Fracturas Osteoporóticas/metabolismo , Ovariectomía , Ratas , Ratas Sprague-Dawley , Microtomografía por Rayos X
14.
Exp Cell Res ; 393(2): 112061, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32437713

RESUMEN

OBJECTIVES: Cisplatin is commonly applied as anticancer agent for various cancers, including ovarian cancer. Unfortunately, the drug resistance frequently occurred which obstructing the effect of cisplatin on tumors. The goal of our research was to investigate the reversal actions and the potential mechanisms of sulforaphane (SFN) on cisplatin resistance in ovarian carcinoma. METHODS: The A2780 and IGROV1 cells and their cisplatin resistance cells A2780/CP70 and IGROV1-R10 were used in this study. Cell viability was detected by CCK-8. The DNA repair was measured by comet assay. The cisplatin transporter proteins were measured with western blotting. The concentration of intracellular cisplatin was detected by HPLC. The luciferase activity assay was applied to determine the target site of miR-30a-3p on the 3'UTR of ERCC1 and ATP7A. A2780/CP70 and IGROV1-R10 xenograft mouse model were established to confirm the antineoplastic action of SFN combined with cisplatin. RESULTS: SFN reversed the resistance of A2780/CP70 and IGROV1-R10 ovarian carcinoma cells to cisplatin through inducing DNA damage and accumulation of intracellular cisplatin. SFN treatment notably increased miR-30a-3p expression, which was decreased in cisplatin-resistant cells. Moreover, overexpressed miR-30a-3p enhanced the sensitivity of A2780/CP70 and IGROV1-R10 cells to cisplatin treatment, and inhibiting miR-30a-3p activity abated the reversal actions of SFN on cisplatin resistance. The luciferase assay findings showed that miR-30a-3p binds to ERCC1 and ATP7A which are the key regulators for DNA repair and cisplatin transportation. CONCLUSIONS: Our findings indicated that SFN could enhance cisplatin sensitivity of ovarian carcinoma cells through up-regulating miR-30a-3p to induce DNA damage and accumulation of intracellular cisplatin.


Asunto(s)
Cisplatino/farmacología , Reparación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Isotiocianatos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Antineoplásicos/farmacología , Carcinoma Epitelial de Ovario/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Ováricas/patología , Sulfóxidos , Regulación hacia Arriba/efectos de los fármacos
15.
Acta Pharmacol Sin ; 42(3): 470-481, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32555444

RESUMEN

P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are involved in intestinal barrier. Short-chain fatty acids (SCFAs) play important roles in maintaining intestinal barrier. In this study we explored how SCFAs affected the expression and function of intestinal P-gp and BCRP in rats. Rats received 150 mM acetate, propionate or butyrate in drinking water for 4 weeks. In SCFA-treated rats, the expression and function of intestinal P-gp were decreased, but those of intestinal BCRP were increased; intestinal p-p65 was also decreased, which was positively related to P-gp protein expression. Among the three SCFAs tested, butyrate exhibited the strongest induction or inhibitory effect, followed by propionate and acetate. Similar results were observed in mouse primary enterocytes and Caco-2 cells treated with acetate (5 mM), propionate (2 mM), or butyrate (1 mM). In Caco-2 cells, addition of butyrate, vorinostat, and valproate (two classic HDAC inhibitors), Bay117082 (selective inhibitor of NF-κB activation) or NF-κB p65 silencing significantly decreased the expression of P-gp and the level of phosphorylated p65 (p-p65). Furthermore, butyrate attenuated the expression of P-gp and p-p65 induced by TNF-α (NF-κB activator) and theophylline (HDAC activator). However, vorinostat, valproate, Bay117082, TNF-α or p65 silencing hardly affected BCRP protein expression. But GW9662 (selective PPARγ antagonist) or PPARγ silencing abolished BCRP induction by butyrate and troglitazone (PPARγ agonist). SCFAs-treated rats showed higher intestinal protein expression of PPARγ, which was positively related to BCRP protein expression. Butyrate increased plasma exposure of fexofenadine but decreased that of rosuvastatin following oral dose to rats. In conclusion, SCFAs exert opposite effects on the expression and function of intestinal P-gp and BCRP; butyrate downregulated P-gp expression and function possibly via inhibiting HDAC/NF-κB pathways; butyrate induced BCRP expression and function partly via PPARγ activation.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Acetatos/farmacología , Butiratos/farmacología , Mucosa Intestinal/metabolismo , Propionatos/farmacología , Animales , Células CACO-2 , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , PPAR gamma/metabolismo , Ratas Sprague-Dawley , Rosuvastatina Cálcica/farmacocinética , Transducción de Señal/efectos de los fármacos , Terfenadina/análogos & derivados , Terfenadina/farmacocinética
16.
Acta Pharmacol Sin ; 42(11): 1942-1950, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33558655

RESUMEN

Breast cancer resistance protein (BCRP) and P-glycoprotein (P-gp) are co-located at blood-brain barrier (BBB) cells, preventing their substrates from entering brain. Accumulating evidence demonstrates that liver failure impairs P-gp and BCRP expression and function in the brain. In the current study, we investigated how liver failure influenced the expression and function of brain BCRP and P-gp in rats subjected to bile duct ligation (BDL). The function of BCRP, P-gp and BBB integrity was assessed using distribution of prazosin, rhodamine 123 and fluorescein, respectively. We showed that BDL significantly decreased BCRP function, but increased P-gp function without affecting BBB integrity. Furthermore, we found that BDL significantly downregulated the expression of membrane BCRP and upregulated the expression of membrane P-gp protein in the cortex and hippocampus. In human cerebral microvascular endothelial cells, NH4Cl plus unconjugated bilirubin significantly decreased BCRP function and expression of membrane BCRP protein, but upregulated P-gp function and expression of membrane P-gp protein. The decreased expression of membrane BCRP protein was linked to the decreased expression of membrane radixin protein, while the increased expression of membrane P-gp protein was related to the increased location of membrane ezrin protein. Silencing ezrin impaired membrane location of P-gp, whereas silencing radixin impaired membrane location of BCRP protein. BDL rats showed the increased expression of membrane ezrin protein and decreased expression of membrane radixin protein in the brain. We conclude that BDL causes opposite effects on the expression and function of brain BCRP and P-gp, attributing to the altered expression of membrane radixin and ezrin protein, respectively, due to hyperbilirubinemia and hyperammonemia.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/biosíntesis , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/biosíntesis , Conductos Biliares/metabolismo , Encéfalo/metabolismo , Proteínas del Citoesqueleto/biosíntesis , Proteínas de la Membrana/biosíntesis , Proteínas de Microfilamentos/biosíntesis , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Animales , Membrana Celular/metabolismo , Proteínas del Citoesqueleto/genética , Expresión Génica , Ligadura/efectos adversos , Masculino , Proteínas de la Membrana/genética , Proteínas de Microfilamentos/genética , ARN Interferente Pequeño/administración & dosificación , Ratas , Ratas Sprague-Dawley
17.
Angew Chem Int Ed Engl ; 60(4): 2160-2164, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33052624

RESUMEN

In contrast to the wealth of asymmetric transformations for generating central chirality from alkyl radicals, the enantiocontrol over the allenyl radicals for forging axial chirality represents an uncharted domain. The challenge arises from the unique elongated linear configuration of the allenyl radicals that necessitates the stereo-differentiation of remote motifs away from the radical reaction site. We herein describe a copper-catalyzed asymmetric radical 1,4-carboalkynylation of 1,3-enynes via the coupling of allenyl radicals with terminal alkynes, providing diverse synthetically challenging tetrasubstituted chiral allenes. A chiral N,N,P-ligand is crucial for both the reaction initiation and the enantiocontrol over the highly reactive allenyl radicals. The reaction features a broad substrate scope, covering a variety of (hetero)aryl and alkyl alkynes and 1,3-enynes as well as radical precursors with excellent functional group tolerance.

18.
Angew Chem Int Ed Engl ; 60(1): 380-384, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32949177

RESUMEN

The development of enantioconvergent cross-coupling of racemic alkyl halides directly with heteroarene C(sp2 )-H bonds has been impeded by the use of a base at elevated temperature that leads to racemization. We herein report a copper(I)/cinchona-alkaloid-derived N,N,P-ligand catalytic system that enables oxidative addition with racemic alkyl bromides under mild conditions. Thus, coupling with azole C(sp2 )-H bonds has been achieved in high enantioselectivity, affording a number of potentially useful α-chiral alkylated azoles, such as 1,3,4-oxadiazoles, oxazoles, and benzo[d]oxazoles as well as 1,3,4-triazoles, for drug discovery. Mechanistic experiments indicated facile deprotonation of an azole C(sp2 )-H bond and the involvement of alkyl radical species under the reaction conditions.

19.
Neurosciences (Riyadh) ; 26(3): 236-241, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34230077

RESUMEN

OBJECTIVES: To compare the clinical efficacy of unilateral and bilateral puncture PKP in the treatment of OVCFs and explored whether there is a difference in the efficacy of unilateral and bilateral puncture PKP after surgery. METHODS: A total of 98 patients with OVCFs treated by PKP from August 2016 to June 2018 were selected. There were 62 cases in the unilateral puncture group and 36 cases in the bilateral puncture group. The operation time, the amount of bone cement injection, the height of the anterior edge of the vertebral body and the visual analog scale (Visual Analog Scale, VAS) scores before and after the operation were analyzed, and whether the differences between the 2 groups were statistically significant was analyzed. RESULTS: All patients were followed up completely. The operation time and the number of X-ray fluoroscopies of the unilateral puncture group were significantly reduced compared to those of the bilateral group, and the difference was statistically significant (p<0.05). In terms of the bone cement injection volume, the average injection volume of the bilateral group was greater than that of the unilateral group, and the difference was statistically significant (p<0.05); the postoperative VAS scores of the 2 groups of patients were significantly improved, and the difference was statistically significant compared with that before surgery (p<0.05) but that of the unilateral group was not statistically significant compared with that of the bilateral group (p>0.05). The height of the anterior edge of the vertebral body in both groups was significantly improved compared with that before the operation, and the difference was statistically significant (p<0.05). CONCLUSION: Unilateral and bilateral puncture PKP can achieve good clinical efficacy in the treatment of osteoporotic vertebral compression fractures, but unilateral PKP has the advantages of short operation time and low X-ray exposure.


Asunto(s)
Fracturas por Compresión , Cifoplastia , Fracturas Osteoporóticas , Fracturas de la Columna Vertebral , Fracturas por Compresión/diagnóstico por imagen , Fracturas por Compresión/cirugía , Humanos , Fracturas Osteoporóticas/diagnóstico por imagen , Fracturas Osteoporóticas/cirugía , Punciones , Estudios Retrospectivos , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de la Columna Vertebral/cirugía , Resultado del Tratamiento
20.
Acta Pharmacol Sin ; 41(11): 1465-1475, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32341465

RESUMEN

Peptide transporter 1 (PepT1), highly expressed on the apical membrane of enterocytes, is involved in energy balance and mediates intestinal absorption of peptidomimetic drugs. In this study, we investigated whether and how diabetes affected the function and expression of intestinal PepT1. Diabetes was induced in rats by combination of high-fat diet and low dose streptozocin injection. Pharmacokinetics study demonstrated that diabetes significantly decreased plasma exposures of cephalexin and acyclovir following oral administration of cephalexin and valacyclovir, respectively. Single-pass intestinal perfusion analysis showed that diabetes remarkably decreased cephalexin absorption, which was associated with decreased expression of intestinal PepT1 protein. We assessed the levels of bile acids in intestine of diabetic rats, and found that diabetic rats exhibited significantly higher levels of chenodeoxycholic acid (CDCA), cholic acid (CA) and glycocholic acid (GCA), and lower levels of lithocholic acid (LCA) and hyodeoxycholic acid (HDCA) than control rats; intestinal deoxycholic acid (DCA) levels were unaltered. In Caco-2 cells, the 6 bile acids remarkably decreased expression of PepT1 protein with CDCA causing the strongest inhibition, whereas TNF-α, LPS and insulin little affected expression of PepT1 protein; short-chain fatty acids induced rather than decreased expression of PepT1 protein. Farnesoid X receptor (FXR) inhibitor glycine-ß-muricholic acid or FXR knockdown reversed the downregulation of PepT1 expression by CDCA and GW4064 (another FXR agonist). In diabetic rats, the expression of intestinal FXR protein was markedly increased. Oral administration of CDCA (90, 180 mg·kg-1·d-1, for 3 weeks) dose-dependently decreased the expression and function of intestinal PepT1 in rats. In conclusion, diabetes impairs the expression and function of intestinal PepT1 partly via CDCA-mediated FXR activation.


Asunto(s)
Ácidos Cólicos/farmacología , Diabetes Mellitus Experimental/fisiopatología , Regulación hacia Abajo/fisiología , Transportador de Péptidos 1/metabolismo , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Animales , Células CACO-2 , Cefalexina/metabolismo , Cefalexina/farmacocinética , Ácidos Cólicos/metabolismo , Humanos , Yeyuno/metabolismo , Ratas , Receptores Citoplasmáticos y Nucleares/metabolismo , Valaciclovir/metabolismo , Valaciclovir/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA