Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 622(7981): 139-148, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704724

RESUMEN

Aphids transmit viruses and are destructive crop pests1. Plants that have been attacked by aphids release volatile compounds to elicit airborne defence (AD) in neighbouring plants2-5. However, the mechanism underlying AD is unclear. Here we reveal that methyl-salicylate (MeSA), salicylic acid-binding protein-2 (SABP2), the transcription factor NAC2 and salicylic acid-carboxylmethyltransferase-1 (SAMT1) form a signalling circuit to mediate AD against aphids and viruses. Airborne MeSA is perceived and converted into salicylic acid by SABP2 in neighbouring plants. Salicylic acid then causes a signal transduction cascade to activate the NAC2-SAMT1 module for MeSA biosynthesis to induce plant anti-aphid immunity and reduce virus transmission. To counteract this, some aphid-transmitted viruses encode helicase-containing proteins to suppress AD by interacting with NAC2 to subcellularly relocalize and destabilize NAC2. As a consequence, plants become less repellent to aphids, and more suitable for aphid survival, infestation and viral transmission. Our findings uncover the mechanistic basis of AD and an aphid-virus co-evolutionary mutualism, demonstrating AD as a potential bioinspired strategy to control aphids and viruses.


Asunto(s)
Aire , Áfidos , Enfermedades de las Plantas , Plantas , Ácido Salicílico , Transducción de Señal , Áfidos/fisiología , Áfidos/virología , Interacciones Microbiota-Huesped , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas/parasitología , Plantas/virología , Ácido Salicílico/metabolismo , Simbiosis , Nicotiana/inmunología , Nicotiana/metabolismo , Nicotiana/parasitología , Nicotiana/virología , Proteínas Virales/metabolismo , Animales
2.
Plant Cell ; 36(2): 427-446, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37851863

RESUMEN

In the presence of pathogenic bacteria, plants close their stomata to prevent pathogen entry. Intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogenic effectors and activate effector-triggered immune responses. However, the regulatory and molecular mechanisms of stomatal immunity involving NLR immune receptors are unknown. Here, we show that the Nicotiana benthamiana RPW8-NLR central immune receptor ACTIVATED DISEASE RESISTANCE 1 (NbADR1), together with the key immune proteins ENHANCED DISEASE SUSCEPTIBILITY 1 (NbEDS1) and PHYTOALEXIN DEFICIENT 4 (NbPAD4), plays an essential role in bacterial pathogen- and flg22-induced stomatal immunity by regulating the expression of salicylic acid (SA) and abscisic acid (ABA) biosynthesis or response-related genes. NbADR1 recruits NbEDS1 and NbPAD4 in stomata to form a stomatal immune response complex. The transcription factor NbWRKY40e, in association with NbEDS1 and NbPAD4, modulates the expression of SA and ABA biosynthesis or response-related genes to influence stomatal immunity. NbADR1, NbEDS1, and NbPAD4 are required for the pathogen infection-enhanced binding of NbWRKY40e to the ISOCHORISMATE SYNTHASE 1 promoter. Moreover, the ADR1-EDS1-PAD4 module regulates stomatal immunity in Arabidopsis (Arabidopsis thaliana). Collectively, our findings show the pivotal role of the core intracellular immune receptor module ADR1-EDS1-PAD4 in stomatal immunity, which enables plants to limit pathogen entry.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Nicotiana/genética , Lipasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Hidrolasas de Éster Carboxílico/genética , Inmunidad de la Planta/genética , Enfermedades de las Plantas/microbiología
3.
EMBO J ; 41(2): e108713, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34888888

RESUMEN

Vacuolar acidification is essential for vacuoles in diverse physiological functions. However, its role in plant defense, and whether and how pathogens affect vacuolar acidification to promote infection remain unknown. Here, we show that Barley stripe mosaic virus (BSMV) replicase γa, but not its mutant γaR569A , directly blocks acidification of vacuolar lumen and suppresses autophagic degradation to promote viral infection in plants. These were achieved via molecular interaction between γa and V-ATPase catalytic subunit B2 (VHA-B2), leading to disruption of the interaction between VHA-B2 and V-ATPase catalytic subunit E (VHA-E), which impairs the membrane localization of VHA-B2 and suppresses V-ATPase activity. Furthermore, a mutant virus BSMVR569A with the R569A point mutation possesses less viral pathogenicity. Interestingly, multiple viral infections block vacuolar acidification. These findings reveal that functional vacuolar acidification is required for plant antiviral defense and disruption of vacuolar acidification could be a general viral counter-defense strategy employed by multiple viruses.


Asunto(s)
Nicotiana/virología , Virus de Plantas/patogenicidad , Vacuolas/metabolismo , Proteinas del Complejo de Replicasa Viral/metabolismo , Proteínas de Plantas/metabolismo , Virus de Plantas/fisiología , Unión Proteica , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/virología , Proteinas del Complejo de Replicasa Viral/química , Replicación Viral
4.
PLoS Pathog ; 19(1): e1011134, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706154

RESUMEN

Autophagy plays an important role in virus infection of the host, because viral components and particles can be degraded by the host's autophagy and some viruses may be able to hijack and subvert autophagy for its benefit. However, details on the mechanisms that govern autophagy for immunity against viral infections or benefit viral survival remain largely unknown. Plant reoviruses such as southern rice black-streaked dwarf virus (SRBSDV), which seriously threaten crop yield, are only transmitted by vector insects. Here, we report a novel mechanism by which SRBSDV induces incomplete autophagy by blocking autophagosome-lysosome fusion, resulting in viral accumulation in gut epithelial cells of its vector, white-backed planthopper (Sogatella furcifera). SRBSDV infection leads to stimulation of the c-Jun N-terminal kinase (JNK) signaling pathway, which further activates autophagy. Mature and assembling virions were found close to the edge7 of the outer membrane of autophagosomes. Inhibition autophagy leads to the decrease of autophagosomes, which resulting in impaired maturation of virions and the decrease of virus titer, whereas activation of autophagy facilitated virus titer. Further, SRBSDV inhibited fusion of autophagosomes and lysosomes by interacting with lysosomal-associated membrane protein 1 (LAMP1) using viral P10. Thus, SRBSDV not only avoids being degrading by lysosomes, but also further hijacks these non-fusing autophagosomes for its subsistence. Our findings reveal a novel mechanism of reovirus persistence, which can explain why SRBSDV can be acquired and transmitted rapidly by its insect vector.


Asunto(s)
Hemípteros , Orthoreovirus , Oryza , Reoviridae , Animales , Enfermedades de las Plantas , Reoviridae/metabolismo , Autofagia
5.
Plant Physiol ; 193(1): 708-720, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37073495

RESUMEN

Autophagy plays an important role in plant antiviral defense. Several plant viruses are reported to encode viral suppressor of autophagy (VSA) to prevent autophagy for effective virus infection. However, whether and how other viruses, in particular DNA viruses, also encode VSAs to affect viral infection in plants is unknown. Here, we report that the C4 protein encoded by Cotton leaf curl Multan geminivirus (CLCuMuV) inhibits autophagy by binding to the autophagy negative regulator eukaryotic translation initiation factor 4A (eIF4A) to enhance the eIF4A-Autophagy-related protein 5 (ATG5) interaction. By contrast, the R54A or R54K mutation in C4 abolishes its capacity to interact with eIF4A, and neither C4R54A nor C4R54K can suppress autophagy. However, the R54 residue is not essential for C4 to interfere with transcriptional gene silencing or post-transcriptional gene silencing. Moreover, plants infected with mutated CLCuMuV-C4R54K develop less severe symptoms with decreased levels of viral DNA. These findings reveal a molecular mechanism underlying how the DNA virus CLCuMuV deploys a VSA to subdue host cellular antiviral autophagy defense and uphold viral infection in plants.


Asunto(s)
Begomovirus , Virosis , Nicotiana/genética , Begomovirus/genética , Proteínas/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Autofagia/genética , Antivirales/metabolismo , Enfermedades de las Plantas
6.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34290145

RESUMEN

Insulin-signaling requires conformational change: whereas the free hormone and its receptor each adopt autoinhibited conformations, their binding leads to structural reorganization. To test the functional coupling between insulin's "hinge opening" and receptor activation, we inserted an artificial ligand-dependent switch into the insulin molecule. Ligand-binding disrupts an internal tether designed to stabilize the hormone's native closed and inactive conformation, thereby enabling productive receptor engagement. This scheme exploited a diol sensor (meta-fluoro-phenylboronic acid at GlyA1) and internal diol (3,4-dihydroxybenzoate at LysB28). The sensor recognizes monosaccharides (fructose > glucose). Studies of insulin-signaling in human hepatoma-derived cells (HepG2) demonstrated fructose-dependent receptor autophosphorylation leading to appropriate downstream signaling events, including a specific kinase cascade and metabolic gene regulation (gluconeogenesis and lipogenesis). Addition of glucose (an isomeric ligand with negligible sensor affinity) did not activate the hormone. Similarly, metabolite-regulated signaling was not observed in control studies of 1) an unmodified insulin analog or 2) an analog containing a diol sensor without internal tethering. Although secondary structure (as probed by circular dichroism) was unaffected by ligand-binding, heteronuclear NMR studies revealed subtle local and nonlocal monosaccharide-dependent changes in structure. Insertion of a synthetic switch into insulin has thus demonstrated coupling between hinge-opening and allosteric holoreceptor signaling. In addition to this foundational finding, our results provide proof of principle for design of a mechanism-based metabolite-responsive insulin. In particular, replacement of the present fructose sensor by an analogous glucose sensor may enable translational development of a "smart" insulin analog to mitigate hypoglycemic risk in diabetes therapy.


Asunto(s)
Insulina/química , Western Blotting , Fructosa/química , Fructosa/metabolismo , Células Hep G2 , Humanos , Insulina/metabolismo , Ligandos , Modelos Moleculares , Conformación Proteica , Transducción de Señal
7.
J Integr Plant Biol ; 66(3): 579-622, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37924266

RESUMEN

Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.


Asunto(s)
Patología de Plantas , Virus de Plantas , Enfermedades de las Plantas/genética , Plantas/genética , Plantas/metabolismo , China
8.
Plant Cell ; 32(4): 1124-1135, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32051213

RESUMEN

Autophagy plays an important role in plant-pathogen interactions. Several pathogens including viruses induce autophagy in plants, but the underpinning mechanism remains largely unclear. Furthermore, in virus-plant interactions, viral factor(s) that induce autophagy have yet to be identified. Here, we report that the ßC1 protein of Cotton leaf curl Multan betasatellite (CLCuMuB) interacts with cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), a negative autophagic regulator, to induce autophagy in Nicotiana benthamiana CLCuMuB ßC1 bound to GAPCs and disrupted the interaction between GAPCs and autophagy-related protein 3 (ATG3). A mutant ßC1 protein (ßC13A) in which I45, Y48, and I53 were all substituted with Ala (A), had a dramatically reduced binding capacity with GAPCs, failed to disrupt the GAPCs-ATG3 interactions and failed to induce autophagy. Furthermore, mutant virus carrying ßC13A showed increased symptoms and viral DNA accumulation associated with decreased autophagy in plants. These results suggest that CLCuMuB ßC1 activates autophagy by disrupting GAPCs-ATG3 interactions.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Begomovirus/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Nicotiana/metabolismo , Nicotiana/virología , Proteínas de Plantas/metabolismo , Proteínas Virales/metabolismo , Unión Proteica , Nicotiana/ultraestructura , Vacuolas/metabolismo , Vacuolas/ultraestructura
9.
Semin Cell Dev Biol ; 101: 36-40, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31291600

RESUMEN

Autophagy is an essential and conserved cellular degradation pathway in eukaryotes. In metazoans, autophagy is highly engaged during the immune responses through interfacing either directly with intracellular pathogens or indirectly with immune signaling molecules. Recent studies have demonstrated that autophagy plays important roles in regulating immunity-related cell death, antiviral and promoting viral pathogenesis during plant-virus interactions. In this review, we will summarize latest progresses and discuss the significant roles of autophagy in the defense and counter-defense arm race between host plants and viruses.


Asunto(s)
Autofagia/inmunología , Interacciones Huésped-Patógeno/inmunología , Virus de Plantas/inmunología , Plantas/inmunología , Plantas/virología
10.
PLoS Pathog ; 16(4): e1008475, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32339200

RESUMEN

The nucleotide-binding, leucine-rich repeat-containing (NLR) class of immune receptors of plants and animals recognize pathogen-encoded proteins and trigger host defenses. Although animal NLRs form oligomers upon pathogen recognition to activate downstream signaling, the mechanisms of plant NLR activation remain largely elusive. Tm-22 is a plasma membrane (PM)-localized coiled coil (CC)-type NLR and confers resistance to Tobacco mosaic virus (TMV) by recognizing its viral movement protein (MP). In this study, we found that Tm-22 self-associates upon recognition of MP. The CC domain of Tm-22 is the signaling domain and its function requires PM localization and self-association. The nucleotide-binding (NB-ARC) domain is important for Tm-22 self-interaction and regulates activation of the CC domain through its nucleotide-binding and self-association. (d)ATP binding may alter the NB-ARC conformation to release its suppression of Tm-22 CC domain-mediated cell death. Our findings provide the first example of signaling domain for PM-localized NLR and insight into PM-localized NLR activation.


Asunto(s)
Proteínas NLR/metabolismo , Nicotiana/metabolismo , Nicotiana/virología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Receptores Inmunológicos/metabolismo , Membrana Celular/metabolismo , Resistencia a la Enfermedad , Proteínas NLR/inmunología , Enfermedades de las Plantas/virología , Inmunidad de la Planta , Proteínas de Plantas/inmunología , Unión Proteica , Dominios Proteicos , Receptores Inmunológicos/inmunología , Transducción de Señal , Nicotiana/inmunología , Virus del Mosaico del Tabaco/metabolismo , Virus del Mosaico del Tabaco/patogenicidad
11.
New Phytol ; 236(4): 1358-1374, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35978547

RESUMEN

Autophagy is an essential degradation pathway that assists eukaryote survival under multiple stress conditions. Autophagosomes engulfing cargoes accomplish degradation only when they have matured through fusing with lysosomes or vacuoles. However, the molecular machinery mediating autophagosome maturation in plants remains unknown. Using the combined approaches of mass spectrometry, biochemistry, reverse genetics and microscopy, we uncover that UVRAG, a subunit of the class III phosphatidylinositol 3-kinase complexes in Nicotiana benthamiana, plays an essential role in autophagsome maturation via ATG14-assisted recruitment to autophagosomes and by facilitating RAB7 activation. An interaction between N. benthamiana UVRAG and ATG14 was observed in vitro and in vivo, which strikingly differed from their mutually exclusive appearance in different PI3KC3 complexes in yeast and mammals. This interaction increased the localisation of UVRAG on autophagosomes and enabled the convergence of autophagic and late endosomal structures, where they contributed to fusions between these two types of organelles by recruiting the essential membrane fusion factors RAB7 GTPase and the homotypic fusion and protein sorting (HOPS) complex. In addition, we uncovered a joint contribution of ATG14 and UVRAG to geminiviral infection, beyond autophagy. Our study provides insights into the mechanisms of autophagosome maturation in plants and expands the understanding of organisations and roles of the PI3KC3 complexes.


Asunto(s)
Autofagosomas , Geminiviridae , Animales , Autofagosomas/metabolismo , Geminiviridae/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Autofagia/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , GTP Fosfohidrolasas/metabolismo , Mamíferos
12.
Plant Physiol ; 187(4): 2865-2876, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34606612

RESUMEN

Virus-induced gene silencing (VIGS) is a versatile and attractive approach for functional gene characterization in plants. Although several VIGS vectors for maize (Zea mays) have been previously developed, their utilities are limited due to low viral infection efficiency, insert instability, short maintenance of silencing, inadequate inoculation method, or abnormal requirement of growth temperature. Here, we established a Cucumber mosaic virus (CMV)-based VIGS system for efficient maize gene silencing that overcomes many limitations of VIGS currently available for maize. Using two distinct strains, CMV-ZMBJ and CMV-Fny, we generated a pseudorecombinant-chimeric (Pr) CMV. Pr CMV showed high infection efficacy but mild viral symptoms in maize. We then constructed Pr CMV-based vectors for VIGS, dubbed Pr CMV VIGS. Pr CMV VIGS is simply performed by mechanical inoculation of young maize leaves with saps of Pr CMV-infected Nicotiana benthamiana under normal growth conditions. Indeed, suppression of isopentenyl/dimethylallyl diphosphate synthase (ZmIspH) expression by Pr CMV VIGS resulted in non-inoculated leaf bleaching as early as 5 d post-inoculation (dpi) and exhibited constant and efficient systemic silencing over the whole maize growth period up to 105 dpi. Furthermore, utilizing a ligation-independent cloning (LIC) strategy, we developed a modified Pr CMV-LIC VIGS vector, allowing easy gene cloning for high-throughput silencing in maize. Thus, our Pr CMV VIGS system provides a much-improved toolbox to facilitate efficient and long-duration gene silencing for large-scale functional genomics in maize, and our pseudorecombination-chimera combination strategy provides an approach to construct efficient VIGS systems in plants.


Asunto(s)
Cucumovirus/fisiología , Silenciador del Gen , Genómica , Zea mays/virología , Quimera , Nicotiana/fisiología
13.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563184

RESUMEN

Autophagy is an evolutionarily conserved catabolic process in eukaryotic cells, by which the superfluous or damaged cytoplasmic components can be delivered into vacuoles or lysosomes for degradation and recycling. Two decades of autophagy research in plants uncovers the important roles of autophagy during diverse biological processes, including development, metabolism, and various stress responses. Additionally, molecular machineries contributing to plant autophagy onset and regulation have also gradually come into people's sights. With the advancement of our knowledge of autophagy from model plants, autophagy research has expanded to include crops in recent years, for a better understanding of autophagy engagement in crop biology and its potentials in improving agricultural performance. In this review, we summarize the current research progress of autophagy in crops and discuss the autophagy-related approaches for potential agronomic trait improvement in crop plants.


Asunto(s)
Autofagia , Productos Agrícolas , Productos Agrícolas/genética , Humanos
14.
New Phytol ; 229(2): 1036-1051, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32898938

RESUMEN

In plants, autophagy is involved in responses to viral infection. However, the role of host factors in mediating autophagy to suppress viruses is poorly understood. A previously uncharacterized plant protein, NbP3IP, was shown to interact with p3, an RNA-silencing suppressor protein encoded by Rice stripe virus (RSV), a negative-strand RNA virus. The potential roles of NbP3IP in RSV infection were examined. NbP3IP degraded p3 through the autophagy pathway, thereby affecting the silencing suppression activity of p3. Transgenic overexpression of NbP3IP conferred resistance to RSV infection in Nicotiana benthamiana. RSV infection was promoted in ATG5- or ATG7-silenced plants and was inhibited in GAPC-silenced plants where autophagy was activated, confirming the role of autophagy in suppressing RSV infection. NbP3IP interacted with NbATG8f, indicating a potential selective autophagosomal cargo receptor role for P3IP. Additionally, the rice NbP3IP homolog (OsP3IP) also mediated p3 degradation and interacted with OsATG8b and p3. Through identification of the involvement of P3IP in the autophagy-mediated degradation of RSV p3, we reveal a new mechanism to antagonize the infection of RSV, and thereby provide the first evidence that autophagy can play an antiviral role against negative-strand RNA viruses.


Asunto(s)
Oryza , Tenuivirus , Virosis , Proteínas Relacionadas con la Autofagia , Oryza/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Nicotiana
15.
Plant Physiol ; 183(4): 1883-1897, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32503901

RESUMEN

Vivipary, wherein seeds germinate prior to dispersal while still associated with the maternal plant, is an adaptation to extreme environments. It is normally inhibited by the establishment of dormancy. The genetic framework of vivipary has been well studied; however, the role of epigenetics in vivipary remains unknown. Here, we report that silencing of METHYLTRANSFERASE1 (SlMET1) promoted precocious seed germination and seedling growth within the tomato (Solanum lycopersicum) epimutant Colorless non-ripening (Cnr) fruits. This was associated with decreases in abscisic acid concentration and levels of mRNA encoding 9-cis-epoxycarotenoid-dioxygenase (SlNCED), which is involved in abscisic acid biosynthesis. Differentially methylated regions were identified in promoters of differentially expressed genes, including SlNCED SlNCED knockdown also induced viviparous seedling growth in Cnr fruits. Strikingly, Cnr ripening reversion suppressed vivipary. Moreover, neither SlMET1/SlNCED-virus-induced gene silencing nor transgenic SlMET1-RNA interference produced vivipary in wild-type tomatoes; the latter affected leaf architecture, arrested flowering, and repressed seed development. Thus, a dual pathway in ripening and SlMET1-mediated epigenetics coordinates the blockage of seed vivipary.


Asunto(s)
Frutas/enzimología , Frutas/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/metabolismo , Dioxigenasas/metabolismo , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas/genética
16.
Plant Cell ; 30(7): 1582-1595, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29848767

RESUMEN

Autophagy is a conserved defense strategy against viral infection. However, little is known about the counterdefense strategies of plant viruses involving interference with autophagy. Here, we show that γb protein from Barley stripe mosaic virus (BSMV), a positive single-stranded RNA virus, directly interacts with AUTOPHAGY PROTEIN7 (ATG7). BSMV infection suppresses autophagy, and overexpression of γb protein is sufficient to inhibit autophagy. Furthermore, silencing of autophagy-related gene ATG5 and ATG7 in Nicotiana benthamiana plants enhanced BSMV accumulation and viral symptoms, indicating that autophagy plays an antiviral role in BSMV infection. Molecular analyses indicated that γb interferes with the interaction of ATG7 with ATG8 in a competitive manner, whereas a single point mutation in γb, Tyr29Ala (Y29A), made this protein deficient in the interaction with ATG7, which was correlated with the abolishment of autophagy inhibition. Consistently, the mutant BSMVY29A virus showed reduced symptom severity and viral accumulation. Taken together, our findings reveal that BSMV γb protein subverts autophagy-mediated antiviral defense by disrupting the ATG7-ATG8 interaction to promote plant RNA virus infection, and they provide evidence that ATG7 is a target of pathogen effectors that functions in the ongoing arms race of plant defense and viral counterdefense.


Asunto(s)
Virus de Plantas/metabolismo , Virus de Plantas/patogenicidad , Proteínas de Plantas/metabolismo , Virus de Plantas/genética , Unión Proteica , ARN Viral/genética , Nicotiana/metabolismo , Nicotiana/virología
17.
J Integr Plant Biol ; 63(2): 283-296, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33205883

RESUMEN

Plant nucleotide-binding, leucine-rich repeat receptors (NLRs) perceive pathogen avirulence effectors and activate defense responses. Nucleotide-binding, leucine-rich repeat receptors are classified into coiled-coil (CC)-containing and Toll/interleukin-1 receptor (TIR)-containing NLRs. Recent advances suggest that NLR CC domains often function in signaling activation, especially for induction of cell death. In this review, we outline our current understanding of NLR CC domains, including their diversity/classification and structure, their roles in cell death induction, disease resistance, and interaction with other proteins. Furthermore, we provide possible directions for future work.


Asunto(s)
Proteínas NLR/química , Proteínas NLR/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/inmunología , Receptores Inmunológicos/química , Receptores Inmunológicos/metabolismo , Muerte Celular , Dominios Proteicos
18.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626668

RESUMEN

In plants, RNA-directed DNA methylation (RdDM)-mediated transcriptional gene silencing (TGS) is a natural antiviral defense against geminiviruses. Several geminiviral proteins have been shown to target the enzymes related to the methyl cycle or histone modification; however, it remains largely unknown whether and by which mechanism geminiviruses directly inhibit RdDM-mediated TGS. In this study, we showed that Cotton leaf curl Multan virus (CLCuMuV) V2 directly interacts with Nicotiana benthamiana AGO4 (NbAGO4) and that the L76S mutation in V2 (V2L76S) abolishes such interaction. We further showed that V2, but not V2L76S, can suppresses RdDM and TGS. Silencing of NbAGO4 inhibits TGS, reduces the viral methylation level, and enhances CLCuMuV DNA accumulation. In contrast, the V2L76S substitution mutant attenuates CLCuMuV infection and enhances the viral methylation level. These findings reveal that CLCuMuV V2 contributes to viral infection by interaction with NbAGO4 to suppress RdDM-mediated TGS in plants.IMPORTANCE In plants, the RNA-directed DNA methylation (RdDM) pathway is a natural antiviral defense mechanism against geminiviruses. However, how geminiviruses counter RdDM-mediated defense is largely unknown. Our findings reveal that Cotton leaf curl Multan virus V2 contributes to viral infection by interaction with NbAGO4 to suppress RNA-directed DNA methylation-mediated transcriptional gene silencing in plants. Our work provides the first evidence that a geminiviral protein is able to directly target core RdDM components to counter RdDM-mediated TGS antiviral defense in plants, which extends our current understanding of viral counters to host antiviral defense.


Asunto(s)
Geminiviridae/genética , Silenciador del Gen/fisiología , Transcripción Genética/genética , Proteínas Virales/genética , Begomovirus/genética , Metilación de ADN/genética , ADN Viral/genética , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/virología , Nicotiana/virología
19.
PLoS Pathog ; 14(8): e1007282, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30157283

RESUMEN

Gene silencing is a natural antiviral defense mechanism in plants. For effective infection, plant viruses encode viral silencing suppressors to counter this plant antiviral response. The geminivirus-encoded C4 protein has been identified as a gene silencing suppressor, but the underlying mechanism of action has not been characterized. Here, we report that Cotton Leaf Curl Multan virus (CLCuMuV) C4 protein interacts with S-adenosyl methionine synthetase (SAMS), a core enzyme in the methyl cycle, and inhibits SAMS enzymatic activity. By contrast, an R13A mutation in C4 abolished its capacity to interact with SAMS and to suppress SAMS enzymatic activity. Overexpression of wild-type C4, but not mutant C4R13A, suppresses both transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). Plants infected with CLCuMuV carrying C4R13A show decreased levels of symptoms and viral DNA accumulation associated with enhanced viral DNA methylation. Furthermore, silencing of NbSAMS2 reduces both TGS and PTGS, but enhanced plant susceptibility to two geminiviruses CLCuMuV and Tomato yellow leaf curl China virus. These data suggest that CLCuMuV C4 suppresses both TGS and PTGS by inhibiting SAMS activity to enhance CLCuMuV infection in plants.


Asunto(s)
Begomovirus/patogenicidad , Silenciador del Gen , Metionina Adenosiltransferasa/metabolismo , Interferencia de ARN , Proteínas Virales/metabolismo , Begomovirus/metabolismo , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Metionina Adenosiltransferasa/genética , Plantas Modificadas Genéticamente , Unión Proteica , Nicotiana/genética , Nicotiana/metabolismo , Transcripción Genética , Proteínas Virales/fisiología
20.
J Exp Bot ; 71(10): 2995-3011, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32016417

RESUMEN

SlSPL-CNR, an SBP-box transcription factor (TF) gene residing at the epimutant Colourless non-ripening (Cnr) locus, is involved in tomato ripening. This epimutant provides a unique model to investigate the (epi)genetic basis of fruit ripening. Here we report that SlSPL-CNR is a nucleus-localized protein with a distinct monopartite nuclear localization signal (NLS). It consists of four consecutive residues ' 30KRKR33' at the N-terminus of the protein. Mutation of the NLS abolishes SlSPL-CNR's ability to localize in the nucleus. SlSPL-CNR comprises two zinc-finger motifs (ZFMs) within the C-terminal SBP-box domain. Both ZFMs contribute to zinc-binding activity. SlSPL-CNR can induce cell death in tomato and tobacco, dependent on its nuclear localization. However, the two ZFMs have differential impacts on SlSPL-CNR's induction of severe necrosis or mild necrotic ringspot. NLS and ZFM mutants cannot complement Cnr fruits to ripen. SlSPL-CNR interacts with SlSnRK1. Virus-induced SlSnRK1 silencing leads to reduction in expression of ripening-related genes and inhibits ripening in tomato. We conclude that SlSPL-CNR is a multifunctional protein that consists of a distinct monopartite NLS, binds to zinc, and interacts with SlSnRK1 to affect cell death and tomato fruit ripening.


Asunto(s)
Solanum lycopersicum , Muerte Celular , Etilenos , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA