RESUMEN
Cis-regulatory elements (CREs) are commonly recognized by correlative chromatin features, yet the molecular composition of the vast majority of CREs in chromatin remains unknown. Here, we describe a CRISPR affinity purification in situ of regulatory elements (CAPTURE) approach to unbiasedly identify locus-specific chromatin-regulating protein complexes and long-range DNA interactions. Using an in vivo biotinylated nuclease-deficient Cas9 protein and sequence-specific guide RNAs, we show high-resolution and selective isolation of chromatin interactions at a single-copy genomic locus. Purification of human telomeres using CAPTURE identifies known and new telomeric factors. In situ capture of individual constituents of the enhancer cluster controlling human ß-globin genes establishes evidence for composition-based hierarchical organization. Furthermore, unbiased analysis of chromatin interactions at disease-associated cis-elements and developmentally regulated super-enhancers reveals spatial features that causally control gene transcription. Thus, comprehensive and unbiased analysis of locus-specific regulatory composition provides mechanistic insight into genome structure and function in development and disease.
Asunto(s)
Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Técnicas Genéticas , Elementos Reguladores de la Transcripción , Animales , Biotinilación , Células Cultivadas , Células Madre Embrionarias/metabolismo , Endonucleasas/genética , Elementos de Facilitación Genéticos , Humanos , Células K562 , Ratones , ARN Guía de Kinetoplastida/metabolismo , Telómero/metabolismo , Globinas beta/genéticaRESUMEN
Major depressive disorder, a prevalent and severe psychiatric condition, necessitates development of new and fast-acting antidepressants. Genetic suppression of astrocytic inwardly rectifying potassium channel 4.1 (Kir4.1) in the lateral habenula ameliorates depression-like phenotypes in mice. However, Kir4.1 remains an elusive drug target for depression. Here, we discovered a series of Kir4.1 inhibitors through high-throughput screening. Lys05, the most potent one thus far, effectively suppressed native Kir4.1 channels while displaying high selectivity against established targets for rapid-onset antidepressants. Cryogenic-electron microscopy structures combined with electrophysiological characterizations revealed Lys05 directly binds in the central cavity of Kir4.1. Notably, a single dose of Lys05 reversed the Kir4.1-driven depression-like phenotype and exerted rapid-onset (as early as 1 hour) antidepressant actions in multiple canonical depression rodent models with efficacy comparable to that of (S)-ketamine. Overall, we provided a proof of concept that Kir4.1 is a promising target for rapid-onset antidepressant effects.
Asunto(s)
Antidepresivos , Canales de Potasio de Rectificación Interna , Antidepresivos/farmacología , Antidepresivos/química , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Ratones , Masculino , Ratas , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/químicaRESUMEN
Apical periodontitis (AP) is a disease caused by pathogenic microorganisms and featured with the degradation of periapical hard tissue. Our recent research showed the crucial role of Z-DNA binding protein 1 (ZBP1)-mediated necroptosis and apoptosis in the pathogenesis of AP. However, the specific regulatory mechanisms of ZBP1 in AP are not fully elucidated. It was found that metformin has a regulatory role in cell necroptosis and apoptosis. But whether and how metformin regulates necroptosis and apoptosis through the ZBP1 in the context of AP remains unknown. This study provided evidence that lipopolysaccharide (LPS) promotes the synthesis of left-handed Z-nucleic acids (Z-NA), which in turn activates ZBP1. Knockout of Zbp1 by CRISPR/Cas9 technology significantly reduced LPS-induced necroptosis and apoptosis in vitro. By using Zbp1-knockout mice, periapical bone destruction was alleviated. Moreover, type I interferon induced the expression of interferon-stimulated genes (ISGs), which serve as a major source of Z-NA. In addition, the RNA-editing enzyme Adenosine Deaminase RNA specific 1 (ADAR1) prevented the accumulation of endogenous Z-NA. Meanwhile, metformin suppressed the ZBP1-mediated necroptosis by inhibiting the expression of ZBP1 and the accumulation of ISGs. Metformin also promoted mitochondrial apoptosis, which is critical for the elimination of intracellular bacterial infection. The enhanced apoptosis further promoted the healing of infected apical bone tissues. In summary, these results demonstrated that the recognition of Z-NA by ZBP1 plays an important role in AP pathogenesis. Metformin suppressed ZBP1-mediated necroptosis and promoted apoptosis, thereby contributing to the soothing of inflammation and bone healing in AP.
Asunto(s)
Interferón Tipo I , Metformina , Periodontitis Periapical , Ratones , Animales , Ratones Noqueados , Lipopolisacáridos , Muerte Celular , Metformina/farmacología , ARN , Proteínas de Unión al ARN , Adenosina DesaminasaRESUMEN
Alzheimer's disease (AD) is a neurodegenerative disease, and mild cognitive impairment (MCI) is considered a transitional stage between healthy aging and dementia. Early detection of MCI can help slow down the progression of AD. At present, there are few studies exploring the characteristics of abnormal dynamic brain activity in AD. This article uses a method called leading eigenvector dynamics analysis (LEiDA) to study resting-state functional magnetic resonance imaging (rs-fMRI) data of AD, MCI, and cognitively normal (CN) participants. By identifying repetitive states of phase coherence, intergroup differences in brain dynamic activity indicators are examined, and the neurobehavioral scales were used to assess the relationship between abnormal dynamic activities and cognitive function. The results showed that in the indicators of occurrence probability and lifetime, the globally synchronized state of the patient group decreased. The activity state of the limbic regions significantly detected the difference between AD and the other two groups. Compared to CN, AD and MCI have varying degrees of increase in default and visual region activity states. In addition, in the analysis related to the cognitive scales, it was found that individuals with poorer cognitive abilities were less active in the globally synchronized state and more active in limbic region activity state and visual region activity state. Taken together, these findings reveal abnormal dynamic activity of resting-state networks in patients with AD and MCI, provide new insights into the dynamic analysis of brain networks, and contribute to a deeper understanding of abnormal spatial dynamic patterns in AD patients.NEW & NOTEWORTHY Alzheimer's disease (AD) is a neurodegenerative disease, but few studies have explored the characteristics of abnormal dynamic brain activity in AD patients. Here, our report reveals the abnormal dynamic activity of the patients' resting-state network, providing new insights into the dynamic analysis of brain networks and helping to gain a deeper understanding of the abnormal spatial dynamic patterns in AD patients.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Femenino , Anciano , Masculino , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Persona de Mediana Edad , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Descanso , Anciano de 80 o más AñosRESUMEN
Despite decades of progress, developing minimally invasive bone-specific drug delivery systems (DDS) to improve fracture healing remains a significant clinical challenge. To address this critical therapeutic need, nanoparticle (NP) DDS comprised of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (PSMA-b-PS) functionalized with a peptide that targets tartrate-resistant acid phosphatase (TRAP) and achieves preferential fracture accumulation has been developed. The delivery of AR28, a glycogen synthase kinase-3 beta (GSK3ß) inhibitor, via the TRAP binding peptide-NP (TBP-NP) expedites fracture healing. Interestingly, however, NPs are predominantly taken up by fracture-associated macrophages rather than cells typically associated with fracture healing. Therefore, the underlying mechanism of healing via TBP-NP is comprehensively investigated herein. TBP-NPAR28 promotes M2 macrophage polarization and enhances osteogenesis in preosteoblast-macrophage co-cultures in vitro. Longitudinal analysis of TBP-NPAR28 -mediated fracture healing reveals distinct spatial distributions of M2 macrophages, an increased M2/M1 ratio, and upregulation of anti-inflammatory and downregulated pro-inflammatory genes compared to controls. This work demonstrates the underlying therapeutic mechanism of bone-targeted NP DDS, which leverages macrophages as druggable targets and modulates M2 macrophage polarization to enhance fracture healing, highlighting the therapeutic benefit of this approach for fractures and bone-associated diseases.
Asunto(s)
Curación de Fractura , Sistema de Administración de Fármacos con Nanopartículas , Curación de Fractura/fisiología , Macrófagos/metabolismo , Huesos , Péptidos/metabolismoRESUMEN
Multiple sclerosis (MS) is a common autoimmune illness that is difficult to treat. The upregulation of Th17 cells is critical in the pathological process of MS. Hederagenol (Hed) has been shown to lower IL-17 levels, although its role in MS pathophysiology is uncertain. In this study, we explore whether Hed could ameliorate MS by modulating Th17 cell differentiation, with the goal of identifying new treatment targets for MS. The experimental autoimmune encephalomyelitis (EAE) mouse model was conducted and Hed was intraperitoneally injected into mice. The weight was recorded and the clinical symptom grade was assessed. Hematoxylin-eosin staining was carried out to determine the extent of inflammation in the spinal cord and liver. The luxol Fast Blue staining was performed to detect the pathological changes in the myelin sheath. Nerve damage was detected using NeuN immunofluorescence staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. Immunohistology approaches were used to study alterations in immune cells in the spinal cord. The proportions of T cell subsets in the spleens were analyzed by flow cytometry. RORγt levels were measured using quantitative real-time PCR or Western blot. The activity of the RORγt promoter was analyzed by Chromatin immunoprecipitation. Hed administration reduced the clinical symptom grade of EAE mice, as well as the inflammatory infiltration, demyelination, and cell disorder of the spinal cord, while having no discernible effect on the mouse weight. In addition, Hed treatment significantly reduced the number of T cells, particularly Th17 cells in the spinal cord and spleen-isolated CD4+ T cells. Hed lowered the RORγt levels in spleens and CD4+ T cells and overexpression of RORγt reversed the inhibitory effect of Hed on Th17 differentiation. Hed decreased nerve injury by modulating Th17 differentiation through the RORγt promoter. Hed regulates Th17 differentiation by reducing RORγt promoter activity, which reduces nerve injury and alleviates EAE.
Asunto(s)
Diferenciación Celular , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Células Th17 , Animales , Células Th17/inmunología , Células Th17/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/inmunología , Diferenciación Celular/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Esclerosis Múltiple/inmunología , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Femenino , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Ratones Endogámicos C57BL , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/metabolismo , Médula Espinal/inmunología , Interleucina-17/metabolismo , Interleucina-17/genéticaRESUMEN
An approach to designing multiconfiguration afocal telescopes is developed and demonstrated. Freeform surfaces are used to maximize the achievable diffraction-limited zoom ratio while staying in a compact volume for a two-position multiconfiguration afocal optical system. The limitations of these systems with three-mirror beam paths are discussed and subsequently overcome by introducing an additional degree of freedom. In a four-mirror beam path system, the goal of a 5x zoom ratio is achieved with a compensated exit pupil and diffraction-limited performance. A significant benefit in optical performance when using freeform surfaces is shown compared to more conventional surface types.
RESUMEN
The relative intensity noise (RIN) characteristics of a continuous-wave diamond Raman laser are investigated for the first time. The results reveal the parasitic stimulated Brillouin scattering (SBS) that usually occurred with higher-order spatial modes in the diamond Raman resonator is a pivotal factor impacting the Raman longitudinal modes and deteriorating the RIN level. The diamond Raman laser automatically switches to single-longitudinal-mode operation and the RIN level is significantly decreased in the frequency range of 200â Hz to 1â MHz after the parasitic SBS is effectively suppressed through inserting a spatial aperture or a χ(2) nonlinear crystal into the cavity. Due to the introduction of additional nonlinear loss to the high intensity Raman fluctuations and the non-lasing spontaneous Raman modes, the χ(2) nonlinear crystal enables better performance in the RIN-level reduction compared to the spatial aperture which can only achieve SBS inhibition. The RIN reduction routes are well suited for various crystalline Raman media to achieve high power and low intensity noise laser at different wavelengths.
RESUMEN
Streptococcus equissp.zooepidemicus (SEZ) is a crucial pathogen and contributes to various infections in numerous animal species. Swine streptococcicosis outbreak caused by SEZ has been reported in several countries in recent years. SzM protein is a cell membrane-anchored protein, which exhibits as an important virulence factor of SEZ. Effects of SzM protein on host innate immune need further study. Here, recombinant SzM (rSzM) protein of the SEZ was obtained, and mice were intraperitoneally injected with rSzM protein. We discovered that rSzM protein can recruit neutrophils into the injected site. In further study, neutrophils were isolated and treated with rSzM protein, NETs release were triggered by rSzM protein independently, and GSDMD protein was promoted-expressed and activated. In order to investigate the role of GSDMD in NETs formation, neutrophils isolated from WT mice and GSDMD-/- mice were treated with rSzM protein. The results showed that GSDMD deficiency suppressed the NETs release. In conclusion, SzM protein of SEZ can trigger the NETs release in a GSDMD-depending manner.
Asunto(s)
Proteínas Bacterianas , Trampas Extracelulares , Neutrófilos , Infecciones Estreptocócicas , Streptococcus equi , Factores de Virulencia , Animales , Ratones , Neutrófilos/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Trampas Extracelulares/metabolismo , Trampas Extracelulares/inmunología , Streptococcus equi/genética , Streptococcus equi/inmunología , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Ratones Noqueados , Proteínas Recombinantes/genética , Inmunidad Innata , Ratones Endogámicos C57BL , Gasderminas , Proteínas de Unión a FosfatoRESUMEN
Multiple myeloma (MM) remains an incurable hematological malignancy. Despite tremendous advances in the treatment, about 10% of patients still have very poor outcomes with median overall survival less than 24 months. Our study aimed to underscore the critical mechanisms pertaining to the rapid disease progression and provide novel therapeutic selection for these ultra-high-risk patients. We utilized single-cell transcriptomic sequencing to dissect the characteristic bone marrow niche of patients with survival of less than two years (EM24). Notably, an enrichment of LILRB4high pre-matured plasma-cell cluster was observed in the patients in EM24 compared to patients with durable remission. This cluster exhibited aggressive proliferation and drug-resistance phenotype. High-level LILRB4 promoted MM clonogenicity and progression. Clinically, high expression of LILRB4 was correlated with poor prognosis in both newly diagnosed MM patients and relapsed/refractory MM patients. The ATAC-seq analysis identified that high chromosomal accessibility caused the elevation of LILRB4 on MM cells. CRISPR-Cas9 deletion of LILRB4 alleviated the growth of MM cells, inhibited the immunosuppressive function of MDSCs, and further rescued T cell dysfunction in MM microenvironment. The more infiltration of myeloid-derived suppressive cells (MDSCs) was observed in EM24 patients as well. Therefore, we innovatively generated a TCR-based chimeric antigen receptor (CAR) T cell, LILRB4-STAR-T. Cytotoxicity experiment demonstrated that LILRB4-STAR-T cells efficaciously eliminated tumor cells and impeded MDSCs function. In conclusion, our study elucidates that LILRB4 is an ideal biomarker and promising immunotherapy target for high-risk MM. LILRB4-STAR-T cell immunotherapy is promising against tumor cells and immunosuppressive tumor microenvironment in MM.
RESUMEN
The design and application of molecular photoswitches have attracted much attention. Herein, we performed a detailed computational study on the photoswitch benzylidene-oxazolone system based on static electronic structure calculations and on-the-fly excited-state dynamic simulations. For the Z and E isomer, we located six and four minimum energy conical intersections (MECIs) between the first excited state (S1) and the ground state (S0), respectively. Among them, the relaxation pathway driven by ring-puckering motion is the most competitive channel with the photoisomeization process, leading to the low photoisomerization quantum yield. In the dynamic simulations, about 88 % and 66 % trajectories decay from S1 to S0 for Z and E isomer, respectively, within the total simulation time of ~2â ps. The photoisomeization quantum yields obtained in our study (0.20 for ZâE and 0.12 for EâZ) agree well with the experimental measured values (0.25 and 0.11), even though the number of trajectories is limited to 50. Our study sheds light on the complexity of the benzylidene-oxazolone system 's deactivation process and the competitive mechanisms among different reaction channels, which provides theoretical guidance for further design and development of benzylidene-oxazolone based molecular photoswitches.
RESUMEN
BACKGROUND: The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS: This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS: This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.
Asunto(s)
Aminoácidos Diaminos , Halomonas , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Halomonas/genética , Halomonas/metabolismo , Presión Osmótica , Perfilación de la Expresión Génica , Peroxidasas/metabolismoRESUMEN
BACKGROUND: Numerous researches have indicated a correlation between the intake of dietary micronutrients and the occurrence of constipation. Nevertheless, the correlation between constipation and vitamin B1 remains uninvestigated. The main aim of this research was to examine the association between chronic constipation and the consumption of vitamin B1 in the diet among adult participants of the National Health and Nutrition Examination Survey (NHANES). METHODS: This study used data from the NHANES, a survey on health and nutrition conducted between 2005 and 2010. The respondents' dietary information was gathered by utilizing the 24-hour dietary records. Various statistical analyses, such as multiple logistic regression, subgroup analysis, and curve-fitting analysis, were employed to investigate the correlation between dietary intake of vitamin B1 and chronic constipation. RESULTS: In the trial, there were 10,371 participants, out of which 1,123 individuals (10.8%) were identified as having chronic constipation. Fully adjusted multiple logistic regression analyses showed that increasing dietary intake of vitamin B1 (OR = 0.87, 95% CI: 0.77-0.99) was significantly associated with a reduced risk of constipation. Following adjustment for multiple variables in Model 3, the odds ratio (OR) and 95% confidence interval (CI) for the third tertile, in comparison to the first tertile (reference group), was 0.80 (0.65, 0.99). In addition, subgroup analyses and interaction tests showed a significant inverse association between vitamin B1 intake and the prevalence of constipation, especially among men, non-hypertensive, and non-diabetic individuals (all P-values less than 0.05). CONCLUSION: This research uncovered an inverse correlation between the consumption of vitamin B1 in the diet and the occurrence of chronic constipation. One potential explanation for this phenomenon is that the consumption of vitamin B1 in one's diet is linked to the softening of stools and an augmented occurrence of colonic peristalsis. Additional extensive prospective research is required to thoroughly examine the significance of thiamine in long-term constipation.
Asunto(s)
Estreñimiento , Dieta , Encuestas Nutricionales , Tiamina , Humanos , Estreñimiento/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Tiamina/administración & dosificación , Enfermedad Crónica , Modelos Logísticos , Anciano , Complejo Vitamínico B/administración & dosificaciónRESUMEN
In recent years, 3-hydroxychromone (3-HC) and its derivatives have attracted much interest for their applications as molecular photoswitches and fluorescent probes. A clear understanding of their excited-state dynamics is essential for their applications and further development of new functional 3-HC derivatives. However, the deactivation mechanism of the photoexcited 3-HC family is still puzzling as their spectral properties are sensitive to the surrounding medium and substituents. The excited-state relaxation channels of 3-HC have been a matter of intense debate. In the current work, we thoroughly investigated the excited-state decay process of the 3-HC system in the gas phase using high-level electronic structure calculations and on-the-fly excited-state dynamic simulations intending to provide insight into the intrinsic photochemical properties of the 3-HC system. A new deactivation mechanism is proposed in the gas phase, which is different from that in solvents. The excited-state intramolecular proton transfer (ESIPT) process that occurs in solutions is not preferred in the gas phase due to the existence of a sizable energy barrier (â¼0.8 eV), and thus, no dual fluorescence is found. On the contrary, the non-radiative decay process is the dominant decay channel, which is driven by photoisomerization combined with ring-puckering and ring-opening processes. The results coincide with the observations of an experiment performed in a supersonic jet by Itoh (M. Itoh, Pure Appl. Chem., 1993, 65(8), 1629-1634). The current work indicates that the solution environment plays an important role in regulating the excited-state dynamic behaviour of the 3-HC system. This study thus provides theoretical guidance for the rational design and improvement of the photochemical properties of the 3-HC system and paves the way for further investigation into its photochemical properties in complex environments.
RESUMEN
BACKGROUND: Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) exhibit potential as therapeutics for a variety of diseases. This observational and Mendelian randomization (MR) study aims to explore the relationship between omega-3 PUFAs and osteoarthritis (OA). METHODS: Excluding individuals under 20 years old and those with missing data on relevant variables in the National Health and Nutrition Examination Survey (NHANES) spanning from 2003 to 2016, a total of 22 834 participants were included in this cross-sectional study. Weighted multivariable-adjusted logistic regression was used to estimate the association between omega-3 PUFAs and OA in adults. Moreover, restricted cubic splines were utilized to examine the dose-response relationship between omega-3 PUFAs and OA. To further investigate the potential causal relationship between omega-3 PUFAs and OA risk, a two-sample MR study was conducted. Furthermore, the robustness of the findings was assessed using various methods. RESULTS: Omega-3 PUFAs intake were inversely associated with OA in adults aged 40 â¼ 59 after multivariable adjustment [Formula: see text], with a nonlinear relationship observed between omega-3 PUFAs intake and OA [Formula: see text]. The IVW results showed there was no evidence to suggest a causal relationship between omega-3 PUFAs and OA risk [Formula: see text]. CONCLUSIONS: Omega-3 PUFAs were inversely associated with OA in adults aged 40 â¼ 59. However, MR studies did not confirm a causal relationship between the two.
Asunto(s)
Ácidos Grasos Omega-3 , Análisis de la Aleatorización Mendeliana , Encuestas Nutricionales , Osteoartritis , Humanos , Osteoartritis/genética , Osteoartritis/epidemiología , Ácidos Grasos Omega-3/administración & dosificación , Masculino , Persona de Mediana Edad , Femenino , Adulto , Estudios Transversales , Factores de RiesgoRESUMEN
The deep space's coldness (â¼4 K) provides a ubiquitous and inexhaustible thermodynamic resource to suppress the cooling energy consumption. However, it is nontrivial to achieve subambient radiative cooling during daytime under strong direct sunlight, which requires rational and delicate photonic design for simultaneous high solar reflectivity (>94%) and thermal emissivity. A great challenge arises when trying to meet such strict photonic microstructure requirements while maintaining manufacturing scalability. Herein, we demonstrate a rapid, low-cost, template-free roll-to-roll method to fabricate spike microstructured photonic nanocomposite coatings with Al2O3 and TiO2 nanoparticles embedded that possess 96.0% of solar reflectivity and 97.0% of thermal emissivity. When facing direct sunlight in the spring of Chicago (average 699 W/m2 solar intensity), the coatings show a radiative cooling power of 39.1 W/m2. Combined with the coatings' superhydrophobic and contamination resistance merits, the potential 14.4% cooling energy-saving capability is numerically demonstrated across the United States.
RESUMEN
Monkeypox is a critical public health emergency with international implications. Few confirmed monkeypox cases had previously been reported outside endemic countries. However, since May 2022, the number of monkeypox infections has increased exponentially in non-endemic countries, especially in North America and Europe. The objective of this study was to develop optimal models for predicting daily cumulative confirmed monkeypox cases to help improve public health strategies. Autoregressive integrated moving average (ARIMA), exponential smoothing, long short-term memory (LSTM) and GM (1, 1) models were employed to fit the cumulative cases in the world, the USA, Spain, Germany, the UK and France. Performance was evaluated by minimum mean absolute percentage error (MAPE), among other metrics. The ARIMA (2, 2, 1) model performed best on the global monkeypox dataset, with a MAPE value of 0.040, while ARIMA (2, 2, 3) performed the best on the USA and French datasets, with MAPE values of 0.164 and 0.043, respectively. The exponential smoothing model showed superior performance on the Spanish, German and UK datasets, with MAPE values of 0.043, 0.015 and 0.021, respectively. In conclusion, an appropriate model should be selected according to the local epidemic characteristics, which is crucial for monitoring the monkeypox epidemic. Monkeypox epidemics remain severe, especially in North America and Europe, e.g. in the USA and Spain. The development of a comprehensive, evidence-based scientific programme at all levels is critical to controlling the spread of monkeypox infection.
Asunto(s)
Aprendizaje Profundo , Epidemias , Mpox , Humanos , Factores de Tiempo , Francia/epidemiología , Modelos EstadísticosRESUMEN
OBJECTIVE: To establish a murine model of Talaromyces marneffei (T. marneffei) latent infection and reactivation, providing a foundation for exploring the molecular mechanisms underlying disease relapse. METHODS: BALB/c mice were tail vein injected with T. marneffei at 0 days post-infection (dpi) and treated with cyclophosphamide (CTX) intraperitoneally every four days, starting from 21 dpi or 42 dpi. Mice were observed for body weight changes, liver and spleen indices, histological characteristics of liver and spleen, fungal load detection in liver and spleen, and Mp1p qualitation in liver and spleen to assess T. marneffei infection severity. RESULTS: T. marneffei-infected mice exhibited a trend of initial weight loss followed by recovery and a subsequent decrease in weight after CTX injection throughout the observation period. Liver and spleen indices, as well as tissue damage, significantly increased during infection but later returned to normal levels, with a gradual rise observed after immunosuppression. Fungal load analysis revealed positive T. marneffei cultures in the liver and spleen at 7 dpi and 14 dpi, followed by negative T. marneffei cultures from 21 dpi until day 21 post-immunosuppression (42 dpi or 63 dpi); however, the spleen remained T. marneffei-cultured negative, consistent with the trend observed in Mp1p detection results. CONCLUSION: A latent infection and reactivation model of T. marneffei in mice was successfully established, with the liver likely serving as a key site for latent T. marneffei.
Asunto(s)
Infección Latente , Micosis , Talaromyces , Animales , Ratones , Modelos Animales de Enfermedad , Micosis/microbiologíaRESUMEN
Extracellular vesicles (EVs) are membrane-encapsulated vesicles released by almost all cell types, which participate in intercellular communication by delivering different types of molecular cargoes, such as non-coding RNAs (ncRNAs). Accumulating evidence suggests that tumor-derived EVs act as a bridge for intercellular crosstalk between tumor cells and surrounding cells, including immune cells. Tumor-derived EVs containing ncRNAs (TEV-ncRNAs) mediate intercellular crosstalk to manipulate immune responses and affect the malignant phenotypes of cancer cells. In this review, we summarize the double-edged roles and the underlying mechanisms of TEV-ncRNAs in regulating innate and adaptive immune cells. We also highlight the advantages of using TEV-ncRNAs in liquid biopsies for cancer diagnosis and prognosis. Moreover, we outline the use of engineered EVs to deliver ncRNAs and other therapeutic agents for cancer therapy.
Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Inmunidad Innata , Comunicación CelularRESUMEN
Pseudorabies virus (PRV) causes viral encephalitis, a devastating disease with high mortality worldwide. Curcumin (CUR) can reduce inflammatory damage by altering the phenotype of microglia; however, whether and how these changes mediate resistance to PRV-induced encephalitis is still unclear. In this study, BV2 cells were infected with/without PRV for 24 h and further treated with/without CUR for 24 h. The results indicated that CUR promoted the polarization of PRV-infected BV2 cells from the M1 phenotype to the M2 phenotype and reversed PRV-induced mitochondrial dysfunction. Furthermore, M1 BV2 cell secretions induced signalling pathways leading to apoptosis in PC-12 neuronal cells, and this effect was abrogated by the secretions of M2 BV2 cells. RNA sequencing and bioinformatics analysis predicted that this phenotypic shift may be due to changes in energy metabolism. Furthermore, Western blot analysis showed that CUR inhibited the increase in AMP-activated protein kinase (AMPK) phosphorylation, glycolysis, and triacylglycerol synthesis and the reduction in oxidative phosphorylation induced by PRV infection. Moreover, the ATP levels in M2 BV2 cells were higher than those in M1 cells. Furthermore, CUR prevented the increase in mortality, elevated body temperature, slowed growth, nervous system excitation, brain tissue congestion, vascular cuffing, and other symptoms of PRV-induced encephalitis in vivo. Thus, this study demonstrated that CUR protected against PRV-induced viral encephalitis by switching the phenotype of BV2 cells, thereby protecting neurons from inflammatory injury, and this effect was mediated by improving mitochondrial function and the AMPK/NF-κB p65-energy metabolism-related pathway.