Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lancet Reg Health Eur ; 43: 100971, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39040529

RESUMEN

Background: Leishmaniases are neglected diseases transmitted by sand flies. They disproportionately affect vulnerable groups globally. Understanding the relationship between climate and disease transmission allows the development of relevant decision-support tools for public health policy and surveillance. The aim of this modelling study was to develop an indicator that tracks climatic suitability for Leishmania infantum transmission in Europe at the subnational level. Methods: Historical records of sand fly vectors, human leishmaniasis, bioclimatic indicators, and environmental variables were integrated in a machine learning framework (XGBoost) to predict suitability in two past periods (2001-2010 and 2011-2020). We further assessed if predictions were associated with human and animal disease data from selected countries (France, Greece, Italy, Portugal, and Spain). Findings: An increase in the number of climatically suitable regions for leishmaniasis was detected, especially in southern and eastern countries, coupled with a northward expansion towards central Europe. The final model had excellent predictive ability (AUC = 0.970 [0.947-0.993]), and the suitability predictions were positively associated with human leishmaniasis incidence and canine seroprevalence for Leishmania. Interpretation: This study demonstrates how key epidemiological data can be combined with open-source climatic and environmental information to develop an indicator that effectively tracks spatiotemporal changes in climatic suitability and disease risk. The positive association between the model predictions and human disease incidence demonstrates that this indicator could help target leishmaniasis surveillance to transmission hotspots. Funding: European Union Horizon Europe Research and Innovation Programme (European Climate-Health Cluster), United Kingdom Research and Innovation.

2.
Sci Total Environ ; 933: 173052, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735337

RESUMEN

We utilized an extensive, multisource, cross-border dataset of daily meteorological observations from over 1500 stations in the Pyrenees, spanning from the mid-20th century to 2020, to examine the spatial and temporal climate patterns. Our focus was on 17 indices related to extreme precipitation and temperature events across the mountain range. The original data underwent rigorous quality control and homogenization processes, employing a comprehensive workflow that included spatial modeling based on environmental predictors. This process yielded two main outcomes: 1) a high-resolution gridded dataset (1 km2) of daily precipitation, maximum and minimum temperature from 1981 to 2020, allowing for a detailed analysis of spatial variations; and 2) an evaluation of long-term annual and seasonal trends from 1959 to 2020, using selection of high-quality data series that were homogenized to preserve their temporal structure and coherence. The findings revealed a clear elevation-related pattern in temperature indices (with the exception of tropical nights, which were predominantly observed on the Mediterranean side) and a distinct north-south latitudinal disparity in precipitation, turning longitudinal when focusing on extreme precipitation events. Overall, there was a notable and significant warming trend of 0.2 to 0.4 °C per decade, and a non-significant change of precipitation, with the exception of the southern and Mediterranean regions, where there was a notable decrease, approximately -3 % per decade, observed on an annual basis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA