Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Inf Model ; 63(18): 5927-5935, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37644761

RESUMEN

(-)-Δ9-trans-tetrahydrocannabinol (THC), which is the principal psychoactive constituent of Cannabis, mediates its action by binding to two members of the G-protein-coupled receptor (GPCR) family: the cannabinoid CB1 (CB1R) and CB2 (CB2R) receptors. Molecular dynamics simulations showed that the pentyl chain of THC could adopts an I-shape conformation, filling an intracellular cavity between Phe3.36 and Trp6.48 for initial agonist-induced receptor activation, in CB1R but not in CB2R. This cavity opens to the five-carbon chain of THC by the conformational change of the γ-branched, flexible, Leu6.51 side chain of CB1R, which is not feasible by the ß-branched, mode rigid, Val6.51 side chain of CB2R. In agreement with our computational results, THC could not decrease the forskolin-induced cAMP levels in cells expressing mutant CB1RL6.51V receptor but could activate the mutant CB2RV6.51L receptor as efficiently as wild-type CB1R. Additionally, JWH-133, a full CB2R agonist, contains a branched dimethyl moiety in the ligand chain that bridges Phe3.36 and Val6.51 for receptor activation. In this case, the substitution of Val6.51 to Leu in CB2R makes JWH-133 unable to activate CB2RV6.51L. In conclusion, our combined computational and experimental results have shown that the amino acid at position 6.51 is a key additional player in the initial mechanism of activation of GPCRs that recognize signaling molecules derived from lipid species.


Asunto(s)
Cannabinoides , Dronabinol , Receptores de Cannabinoides , Dronabinol/farmacología , Cannabinoides/farmacología , Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacología , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2
2.
J Chem Inf Model ; 62(22): 5771-5779, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36302505

RESUMEN

Molecular dynamic (MD) simulations have become a common tool to study the pathway of ligand entry to the orthosteric binding site of G protein-coupled receptors. Here, we have combined MD simulations and site-directed mutagenesis to study the binding process of the potent JWH-133 agonist to the cannabinoid CB2 receptor (CB2R). In CB2R, the N-terminus and extracellular loop 2 fold over the ligand binding pocket, blocking access to the binding cavity from the extracellular environment. We, thus, hypothesized that the binding pathway is a multistage process consisting of the hydrophobic ligand diffusing in the lipid bilayer to contact a lipid-facing vestibule, from which the ligand enters an allosteric site inside the transmembrane bundle through a tunnel formed between TMs 1 and 7 and finally moving from the allosteric to the orthosteric binding cavity. This pathway was experimentally validated by the Ala2827.36Phe mutation that blocks the entrance of the ligand, as JWH-133 was not able to decrease the forskolin-induced cAMP levels in cells expressing the mutant receptor. This proposed ligand entry pathway defines transient binding sites that are potential cavities for the design of synthetic modulators.


Asunto(s)
Cannabinoides , Membrana Dobles de Lípidos , Ligandos , Membrana Dobles de Lípidos/química , Receptores de Cannabinoides/metabolismo , Mutación Puntual , Sitios de Unión , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB1/metabolismo , Unión Proteica
3.
Cell Mol Life Sci ; 78(8): 3957-3968, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33580270

RESUMEN

Adenosine is one of the most ancient signaling molecules and has receptors in both animals and plants. In mammals there are four specific receptors, A1, A2A, A2B, and A3, which belong to the superfamily of G-protein-coupled receptors (GPCRs). Evidence accumulated in the last 20 years indicates that GPCRs are often expressed as oligomeric complexes formed by a number of equal (homomers) or different (heteromers) receptors. This review presents the data showing the occurrence of heteromers formed by A1 and A2A, A2A and A2B, and A2A and A3 receptors highlighting (i) their tetrameric structural arrangements, and (ii) the functional diversity that those heteromers provide to adenosinergic signaling.


Asunto(s)
Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Animales , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Receptores Purinérgicos P1/química , Transducción de Señal
4.
J Chem Inf Model ; 59(5): 2456-2466, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30811196

RESUMEN

The metabotropic glutamate 5 (mGlu5) receptor is a class C G protein-coupled receptor (GPCR) that is implicated in several CNS disorders making it a popular drug discovery target. Years of research have revealed allosteric mGlu5 ligands showing an unexpected complete switch in functional activity despite only small changes in their chemical structure, resulting in positive allosteric modulators (PAM) or negative allosteric modulators (NAM) for the same scaffold. Up to now, the origins of this effect are not understood, causing difficulties in a drug discovery context. In this work, experimental data was gathered and analyzed alongside docking and Molecular Dynamics (MD) calculations for three sets of PAM and NAM pairs. The results consistently show the role of specific interactions formed between ligand substituents and amino acid side chains that block or promote local movements associated with receptor activation. The work provides an explanation for how such small structural changes lead to remarkable differences in functional activity. While this work can greatly help drug discovery programs avoid these switches, it also provides valuable insight into the mechanisms of class C GPCR allosteric activation. Furthermore, the approach shows the value of applying MD to understand functional activity in drug design programs, even for such close structural analogues.


Asunto(s)
Regulación Alostérica , Receptor del Glutamato Metabotropico 5/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica , Receptor del Glutamato Metabotropico 5/química , Agua/metabolismo
5.
Molecules ; 24(6)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30897742

RESUMEN

Metabotropic glutamate (mGlu) receptors are a family of eight GPCRs that are attractive drug discovery targets to modulate glutamate action and response. Here we review the application of computational methods to the study of this family of receptors. X-ray structures of the extracellular and 7-transmembrane domains have played an important role to enable structure-based modeling approaches, whilst we also discuss the successful application of ligand-based methods. We summarize the literature and highlight the areas where modeling and experiment have delivered important understanding for mGlu receptor drug discovery. Finally, we offer suggestions of future areas of opportunity for computational work.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/metabolismo , Regulación Alostérica , Animales , Humanos , Simulación de Dinámica Molecular , Unión Proteica
6.
Adv Pharmacol ; 88: 1-33, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32416864

RESUMEN

Allosteric modulation of GPCRs, especially metabotropic glutamate (mGlu) receptors, has become an important strategy for drug discovery. Positive and negative allosteric modulators (PAM, NAM) are widely reported for the mGlu receptor family with leads mostly originating by high-throughput screening followed by iterative medicinal chemistry. The progression of the field from mutagenesis and homology modeling to elaborate structure-enabled drug discovery is described. We detail how computational methods have delivered new chemical matter and revealed the functional details of PAM and NAM activity. The breakthrough in mGlu receptor 7-transmembrane (7TM) crystal structures enabled recent combined modeling and experimental studies to confirm common binding sites, interactions and the origins of ligand effect on functional activity. Focusing on allosteric modulation of the mGlu2 and mGlu5 receptors, similarities are seen that still accommodate the known differences in binding sites and SAR. This work reveals the promise of a methodical computational approach built upon deep analysis of 7TM receptor simulations and interpretation of results in the context of our current understanding of receptor function. A crucial aspect was the close collaboration between modeling and experiment necessary to build and interrogate the hypotheses.


Asunto(s)
Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/metabolismo , Regulación Alostérica , Sitio Alostérico , Animales , Humanos , Ligandos , Modelos Moleculares , Mutagénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA