Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2309616, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564782

RESUMEN

Radiolabeling and nuclear imaging techniques are used to investigate the biodistribution patterns of the soft and hard protein corona around poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) after administration to healthy mice. Soft and hard protein coronas of 131I-labeled BSA or 131I-labeled serum are formed on PLGA NPs functionalized with either polyehtylenimine (PEI) or bovine serum albumin (BSA). The exchangeability of hard and soft corona is assessed in vitro by gamma counting exposing PLGA NPs with corona to non-labeled BSA, serum, or simulated body fluid. PEI PLGA NPs form larger and more stable coronas than BSA PLGA NPs. Soft coronas are more exchangeable than hard ones. The in vivo fate of PEI PLGA NPs coated with preformed 18F-labeled BSA hard and soft coronas is assessed by positron emission tomography (PET) following intravenous administration. While the soft corona shows a biodistribution similar to free 18F BSA with high activity in blood and kidney, the hard corona follows patterns characteristic of nanoparticles, accumulating in the lungs, liver, and spleen. These results show that in vivo fates of soft and hard corona are different, and that soft corona is more easily exchanged with proteins from the body, while hard corona is largely retained on the nanoparticle surface.

2.
Molecules ; 29(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38257401

RESUMEN

The small-molecule iododiflunisal (IDIF) is a transthyretin (TTR) tetramer stabilizer and acts as a chaperone of the TTR-Amyloid beta interaction. Oral administration of IDIF improves Alzheimer's Disease (AD)-like pathology in mice, although the mechanism of action and pharmacokinetics remain unknown. Radiolabeling IDIF with positron or gamma emitters may aid in the in vivo evaluation of IDIF using non-invasive nuclear imaging techniques. In this work, we report an isotopic exchange reaction to obtain IDIF radiolabeled with 18F. [19F/18F]exchange reaction over IDIF in dimethyl sulfoxide at 160 °C resulted in the formation of [18F]IDIF in 7 ± 3% radiochemical yield in a 20 min reaction time, with a final radiochemical purity of >99%. Biodistribution studies after intravenous administration of [18F]IDIF in wild-type mice using positron emission tomography (PET) imaging showed capacity to cross the blood-brain barrier (ca. 1% of injected dose per gram of tissue in the brain at t > 10 min post administration), rapid accumulation in the liver, long circulation time, and progressive elimination via urine. Our results open opportunities for future studies in larger animal species or human subjects.


Asunto(s)
Enfermedad de Alzheimer , Diflunisal/análogos & derivados , Humanos , Animales , Ratones , Preparaciones Farmacéuticas , Distribución Tisular , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Prealbúmina , Péptidos beta-Amiloides , Excipientes
3.
Nanoscale ; 16(7): 3525-3533, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38273800

RESUMEN

A deeper knowledge on the formation and biological fate of polymer based gene vectors is needed for their translation into therapy. Here, polyplexes of polyethyleneimine (PEI) and silencing RNA (siRNA) are formed with theoretical N/P ratios of 2, 4 and 12. Fluorescence correlation spectroscopy (FCS) is used to study the formation of polyplexes from fluorescently labelled PEI and siRNA. FCS proves the presence of free PEI. From the analysis of the autocorrelation functions it was possible to determine the actual stoichiometry of polyplexes. FCS and fluorescence cross correlation spectroscopy (FCCS) are used to follow the fate of the polyplexes intracellularly. Polyplexes disassemble after 1 day inside cells. Positron emission tomography (PET) studies are conducted with radiolabelled polyplexes prepared with siRNA or PEI labelled with 2,3,5,6-tetrafluorophenyl 6-[18F]-fluoronicotinate ([18F]F-PyTFP). PET studies in healthy mice show that [18F]siRNA/PEI and siRNA/[18F]PEI polyplexes show similar biodistribution patterns with limited circulation in the bloodstream and accumulation in the liver. Higher activity for [18F]PEI in the kidney and bladder suggests the presence of free PEI.


Asunto(s)
Polietileneimina , ARN Bicatenario , Animales , Ratones , Polietileneimina/química , ARN Interferente Pequeño/química , Distribución Tisular , Espectrometría de Fluorescencia , Tomografía de Emisión de Positrones
4.
J Extracell Biol ; 3(2): e140, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38939902

RESUMEN

Extracellular vesicles (EVs) have been involved in metabolic syndrome, although their specific role in the development of the pathology is still unknown. To further study the role of EVs, we have analysed by Raman tweezers microspectroscopy and mass spectrometry-based lipidomics the small EVs population secreted by fatty (ZF) and lean (ZL) hepatocytes obtained from Zucker rats. We have also explored in vivo and ex vivo biodistribution of these EVs through fluorine-18-radiolabelling using a positron emission tomography imaging. Based on the proportion of proteins to lipids and the types of lipids, our results indicate that within the range of small EVs, primary hepatocytes secrete different subpopulations of particles. These differences were observed in the enrichment of triglyceride species in EVs secreted by ZF hepatocytes. Biodistribution experiments showed accumulation in the brain, heart, lungs, kidney and specially in bladder after intravenous administration. In summary, we show that EVs released by a fatty hepatocytes carry a different lipid signature compared to their lean counterpart. Biodistribution experiment has shown no difference in the distribution of EVs secreted by ZF and ZL hepatocytes but has given us a first view of possible target organs for these particles. Our results might open a door to both pathology studies and therapeutic interventions.

5.
Int J Pharm ; 652: 123764, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176479

RESUMEN

Triple-negative breast cancer (TNBC) diagnosis remains challenging without expressing critical receptors. Cancer cell membrane (CCm) coating has been extensively studied for targeted cancer diagnostics due to attractive features such as good biocompatibility and homotypic tumor-targeting. However, the present study found that widely used CCm coating approaches, such as extrusion, were not applicable for functionalizing irregularly shaped nanoparticles (NPs), such as porous silicon (PSi). To tackle this challenge, we proposed a novel approach that employs polyethylene glycol (PEG)-assisted membrane coating, wherein PEG and CCm are respectively functionalized on PSi NPs through chemical conjugation and physical absorption. Meanwhile, the PSi NPs were grafted with the bisphosphonate (BP) molecules for radiolabeling. Thanks to the good chelating ability of BP and homotypic tumor targeting of cancer CCm coating, a novel PSi-based contrast agent (CCm-PEG-89Zr-BP-PSi) was developed for targeted positron emission tomography (PET)/computed tomography (CT) imaging of TNBC. The novel imaging agent showed good radiochemical purity (∼99 %) and stability (∼95 % in PBS and ∼99 % in cell medium after 48 h). Furthermore, the CCm-PEG-89Zr-BP-PSi NPs had efficient homotypic targeting ability in vitro and in vivo for TNBC. These findings demonstrate a versatile biomimetic coating method to prepare novel NPs for tumor-targeted diagnosis.


Asunto(s)
Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Polietilenglicoles/química , Silicio , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Biomimética , Nanopartículas/química , Membrana Celular/metabolismo , Línea Celular Tumoral
6.
Nat Nanotechnol ; 19(4): 554-564, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38225356

RESUMEN

Bladder cancer treatment via intravesical drug administration achieves reasonable survival rates but suffers from low therapeutic efficacy. To address the latter, self-propelled nanoparticles or nanobots have been proposed, taking advantage of their enhanced diffusion and mixing capabilities in urine when compared with conventional drugs or passive nanoparticles. However, the translational capabilities of nanobots in treating bladder cancer are underexplored. Here, we tested radiolabelled mesoporous silica-based urease-powered nanobots in an orthotopic mouse model of bladder cancer. In vivo and ex vivo results demonstrated enhanced nanobot accumulation at the tumour site, with an eightfold increase revealed by positron emission tomography in vivo. Label-free optical contrast based on polarization-dependent scattered light-sheet microscopy of cleared bladders confirmed tumour penetration by nanobots ex vivo. Treating tumour-bearing mice with intravesically administered radio-iodinated nanobots for radionuclide therapy resulted in a tumour size reduction of about 90%, positioning nanobots as efficient delivery nanosystems for bladder cancer therapy.


Asunto(s)
Ureasa , Neoplasias de la Vejiga Urinaria , Ratones , Animales , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Administración Intravesical , Radioisótopos/uso terapéutico
7.
Front Pharmacol ; 14: 1308478, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259288

RESUMEN

There remains a need for new drug targets for treatment-resistant temporal lobe epilepsy. The ATP-gated P2X7 receptor coordinates neuroinflammatory responses to tissue injury. Previous studies in mice reported that the P2X7 receptor antagonist JNJ-47965567 suppressed spontaneous seizures in the intraamygdala kainic acid model of epilepsy and reduced attendant gliosis in the hippocampus. The drug-resistance profile of this model is not fully characterised, however, and newer P2X7 receptor antagonists with superior pharmacokinetic profiles have recently entered clinical trials. Using telemetry-based continuous EEG recordings in mice, we demonstrate that spontaneous recurrent seizures in the intraamygdala kainic acid model are refractory to the common anti-seizure medicine levetiracetam. In contrast, once-daily dosing of JNJ-54175446 (30 mg/kg, intraperitoneal) resulted in a significant reduction in spontaneous recurrent seizures which lasted several days after the end of drug administration. Using a combination of immunohistochemistry and ex vivo radiotracer assay, we find that JNJ-54175446-treated mice at the end of recordings display a reduction in astrogliosis and altered microglia process morphology within the ipsilateral CA3 subfield of the hippocampus, but no difference in P2X7 receptor surface expression. The present study extends the characterisation of the drug-resistance profile of the intraamygdala kainic acid model in mice and provides further evidence that targeting the P2X7 receptor may have therapeutic applications in the treatment of temporal lobe epilepsy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA