Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 21(7): e3002202, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37459303

RESUMEN

Toxoplasma gondii secretes protein effectors to subvert the human immune system sufficiently to establish a chronic infection. Relative to murine infections, little is known about which parasite effectors disarm human immune responses. Here, we used targeted CRISPR screening to identify secreted protein effectors required for parasite survival in IFNγ-activated human cells. Independent screens were carried out using 2 Toxoplasma strains that differ in virulence in mice, leading to the identification of effectors required for survival in IFNγ-activated human cells. We identify the secreted protein GRA57 and 2 other proteins, GRA70 and GRA71, that together form a complex which enhances the ability of parasites to persist in IFNγ-activated human foreskin fibroblasts (HFFs). Components of the protein machinery required for export of Toxoplasma proteins into the host cell were also found to be important for parasite resistance to IFNγ in human cells, but these export components function independently of the identified protein complex. Host-mediated ubiquitination of the parasite vacuole has previously been associated with increased parasite clearance from human cells, but we find that vacuoles from GRA57, GRA70, and GRA71 knockout strains are surprisingly less ubiquitinated by the host cell. We hypothesise that this is likely a secondary consequence of deletion of the complex, unlinked to the IFNγ resistance mediated by these effectors.


Asunto(s)
Parásitos , Toxoplasma , Humanos , Animales , Ratones , Toxoplasma/metabolismo , Parásitos/metabolismo , Interferón gamma , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Virulencia , Vacuolas/metabolismo
2.
PLoS Pathog ; 18(12): e1011021, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36476844

RESUMEN

Toxoplasma gondii is an intracellular parasite that can infect many host species and is a cause of significant human morbidity worldwide. T. gondii secretes a diverse array of effector proteins into the host cell which are critical for infection. The vast majority of these secreted proteins have no predicted functional domains and remain uncharacterised. Here, we carried out a pooled CRISPR knockout screen in the T. gondii Prugniaud strain in vivo to identify secreted proteins that contribute to parasite immune evasion in the host. We demonstrate that ROP1, the first-identified rhoptry protein of T. gondii, is essential for virulence and has a previously unrecognised role in parasite resistance to interferon gamma-mediated innate immune restriction. This function is conserved in the highly virulent RH strain of T. gondii and contributes to parasite growth in both murine and human macrophages. While ROP1 affects the morphology of rhoptries, from where the protein is secreted, it does not affect rhoptry secretion. Finally, we show that ROP1 co-immunoprecipitates with the host cell protein C1QBP, an emerging regulator of innate immune signaling. In summary, we identify putative in vivo virulence factors in the T. gondii Prugniaud strain and show that ROP1 is an important and previously overlooked effector protein that counteracts both murine and human innate immunity.


Asunto(s)
Inmunidad Innata , Proteínas Protozoarias , Toxoplasma , Animales , Humanos , Ratones , Proteínas Portadoras , Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Factores de Virulencia
3.
Cell Host Microbe ; 31(10): 1748-1762.e8, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37827122

RESUMEN

Intracellular pathogens and other endosymbionts reprogram host cell transcription to suppress immune responses and recalibrate biosynthetic pathways. This reprogramming is critical in determining the outcome of infection or colonization. We combine pooled CRISPR knockout screening with dual host-microbe single-cell RNA sequencing, a method we term dual perturb-seq, to identify the molecular mediators of these transcriptional interactions. Applying dual perturb-seq to the intracellular pathogen Toxoplasma gondii, we are able to identify previously uncharacterized effector proteins and directly infer their function from the transcriptomic data. We show that TgGRA59 contributes to the export of other effector proteins from the parasite into the host cell and identify an effector, TgSOS1, that is necessary for sustained host STAT6 signaling and thereby contributes to parasite immune evasion and persistence. Together, this work demonstrates a tool that can be broadly adapted to interrogate host-microbe transcriptional interactions and reveal mechanisms of infection and immune evasion.


Asunto(s)
Toxoplasma , Toxoplasma/genética , Perfilación de la Expresión Génica , Transcriptoma , Evasión Inmune , Transducción de Señal , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
4.
Sci Rep ; 6: 35738, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27760994

RESUMEN

Efficiency of yeast transformation is determined by the rate of yeast endocytosis. The aim of this study was to investigate the effect of introducing amino acids and other nutrients (inositol, adenine, or p-aminobenzoic acid) in the transformation medium to develop a highly efficient yeast transformation protocol. The target of rapamycin complex 1 (TORC1) kinase signalling complex influences the rate of yeast endocytosis. TORC signaling is induced by amino acids in the media. Here, we found that increasing the concentration of amino acids and other nutrients in the growth media lead to an increase yeast transformation efficiency up to 107 CFU per µg plasmid DNA and per 108 cells with a 13.8 kb plasmid DNA. This is over 130 times that of current published methods. This improvement may facilitate more efficient experimentation in which transformation efficiency is critical, such as yeast two-hybrid screening.


Asunto(s)
Medios de Cultivo/química , Competencia de la Transformación por ADN/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Factores Biológicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA