Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Biol Chem ; 295(7): 1815-1828, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31896575

RESUMEN

Cryptococcus neoformans and Cryptococcus gattii are two species complexes in the large fungal genus Cryptococcus and are responsible for potentially lethal disseminated infections. These two complexes share several phenotypic traits, such as production of the protective compound melanin. In C. neoformans, the pigment associates with key cellular constituents that are essential for melanin deposition within the cell wall. Consequently, melanization is modulated by changes in cell-wall composition or ultrastructure. However, whether similar factors influence melanization in C. gattii is unknown. Herein, we used transmission EM, biochemical assays, and solid-state NMR spectroscopy of representative isolates and "leaky melanin" mutant strains from each species complex to examine the compositional and structural factors governing cell-wall pigment deposition in C. neoformans and C. gattii. The principal findings were the following. 1) C. gattii R265 had an exceptionally high chitosan content compared with C. neoformans H99; a rich chitosan composition promoted homogeneous melanin distribution throughout the cell wall but did not increase the propensity of pigment deposition. 2) Strains from both species manifesting the leaky melanin phenotype had reduced chitosan content, which was compensated for by the production of lipids and other nonpolysaccharide constituents that depended on the species or mutation. 3) Changes in the relative rigidity of cell-wall chitin were associated with aberrant pigment retention, implicating cell-wall flexibility as an independent variable in cryptococcal melanin assembly. Overall, our results indicate that cell-wall composition and molecular architecture are critical factors for the anchoring and arrangement of melanin pigments in both C. neoformans and C. gattii species complexes.


Asunto(s)
Pared Celular/genética , Cryptococcus gattii/metabolismo , Cryptococcus neoformans/metabolismo , Melaninas/genética , Pigmentación/genética , Pared Celular/química , Quitina/química , Quitina/metabolismo , Quitosano/química , Quitosano/metabolismo , Criptococosis/genética , Criptococosis/microbiología , Cryptococcus gattii/genética , Cryptococcus gattii/patogenicidad , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Humanos , Espectroscopía de Resonancia Magnética , Melaninas/química , Melaninas/metabolismo , Mutación/genética
2.
Fungal Genet Biol ; 108: 13-25, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28870457

RESUMEN

C. neoformans is an encapsulated fungal pathogen with defined asexual and sexual life cycles. Due to the availability of genetic and molecular tools for its manipulation, it has become a model organism for studies of fungal pathogens, even though it lacks a reliable system for maintaining DNA fragments as extrachromosomal plasmids. To compensate for this deficiency, we identified a genomic gene-free intergenic region where heterologous DNA could be inserted by homologous recombination without adverse effects on the phenotype of the recipient strain. Since such a site in the C. neoformans genome at a different location has been named previously as "safe haven", we named this locus second safe haven site (SH2). Insertion of DNA into this site in the genome of the KN99 congenic strain pair caused minimal change in the growth of the engineered strain under a variety of in vitro and in vivo conditions. We exploited this 'safe' locus to create a genetically stable highly fluorescent strain expressing mCherry protein (KN99mCH); this strain closely resembled its wild-type parent (KN99α) in growth under a variety of in vitro stress conditions and in the expression of virulence traits. The efficiency of phagocytosis and the proliferation of KN99mCH inside human monocyte-derived macrophages were comparable to those of KN99α, and the engineered strain showed the expected organ dissemination after inoculation, although there was a slight reduction in virulence. The mCherry fluorescence allowed us to measure specific association of cryptococci with leukocytes in the lungs and mediastinal lymph nodes of infected animals and, for the first-time, to assess their live/dead status in vivo. These results highlight the utility of KN99mCH for elucidation of host-pathogen interactions in vivo. Finally, we generated drug-resistant KN99 strains of both mating types that are marked at the SH2 locus with a specific drug resistant gene cassette; these strains will facilitate the generation of mutant strains by mating.


Asunto(s)
Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Proteínas Luminiscentes/genética , Animales , Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , ADN de Hongos , Femenino , Fluorescencia , Técnicas de Transferencia de Gen , Genes Reporteros , Ratones , Ratones Endogámicos CBA , Mutagénesis Insercional , Fenotipo , Ingeniería de Proteínas , Especificidad de la Especie , Transcripción Genética , Proteína Fluorescente Roja
3.
PLoS Genet ; 10(4): e1004261, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24743168

RESUMEN

Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.


Asunto(s)
Cryptococcus neoformans/genética , Genoma Fúngico/genética , ARN de Hongos/genética , Transcriptoma/genética , Virulencia/genética , Cromosomas Fúngicos/genética , ADN de Hongos/genética , Intrones/genética
4.
Mol Microbiol ; 90(3): 630-648, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23998805

RESUMEN

Mechanisms of oxidative stress resistance are crucial virulence factors for survival and proliferation of fungal pathogens within the human host. In this study we have identified and functionally characterized the role of sulphiredoxin, Srx1, in oxidative stress resistance of Cryptococcus neoformans causing fungal meningoencephalitis and regulation of peroxiredoxins, Tsa1 and Tsa3, and thioredoxins, Trx1 and Trx2. The C. neoformans HOG (High Osmolarity Glycerol response) pathway was essential for the transcriptional regulation of SRX1 under peroxide stress conditions. A gene deletion study revealed that Srx1 was required for cells to counteract peroxide stress, but not other oxidative damaging agents. HOG1 was found to be essential for the induction of adaptive response to peroxide stress with concurrent repression of ergosterol biosynthesis in an SRX1-independent manner. Consistent with this, phosphorylation of C. neoformans Hog1 was modulated by both low and high doses of exogenous hydrogen peroxide treatment. Immunoblot analysis using the C. neoformans Tsa1 specific antibody revealed that both Srx1 and Trx1 were essential for recycling of oxidized Tsa1. In addition to its role in peroxide sensing and response C. neoformans Srx1 was also found to be required for a peroxiredoxin-independent function in promoting fungicide-dependent cell swelling and growth arrest. Finally we showed the importance of C. neoformans Srx1 in fungal pathogenesis by demonstrating its requirement for full virulence using a mouse infection model.


Asunto(s)
Antiinfecciosos Locales/farmacología , Cryptococcus neoformans/patogenicidad , Ergosterol/biosíntesis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peróxido de Hidrógeno/farmacología , Peroxirredoxinas/metabolismo , Animales , Criptococosis , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/metabolismo , Dioxoles/farmacología , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Humanos , Ratones , Ratones Endogámicos CBA , Pirroles/farmacología , Transducción de Señal/efectos de los fármacos
5.
Eukaryot Cell ; 12(1): 118-31, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23159519

RESUMEN

To initiate and establish infection in mammals, the opportunistic fungal pathogen Cryptococcus neoformans must survive and thrive upon subjection to host temperature. Primary maintenance of cell integrity is controlled through the protein kinase C1 (PKC1) signaling pathway, which is regulated by a Rho1 GTPase in Saccharomyces cerevisiae. We identified three C. neoformans Rho GTPases, Rho1, Rho10, and Rho11, and have begun to elucidate their role in growth and activation of the PKC1 pathway in response to thermal stress. Western blot analysis revealed that heat shock of wild-type cells resulted in phosphorylation of Mpk1 mitogen-activated protein kinase (MAPK). Constitutive activation of Rho1 caused phosphorylation of Mpk1 independent of temperature, indicating its role in pathway regulation. A strain with a deletion of RHO10 also displayed this constitutive Mpk1 phosphorylation phenotype, while one with a deletion of RHO11 yielded phosphorylation similar to that of wild type. Surprisingly, like a rho10Δ strain, a strain with a deletion of both RHO10 and RHO11 displayed temperature sensitivity but mimicked wild-type phosphorylation, which suggests that Rho10 and Rho11 have coordinately regulated functions. Heat shock-induced Mpk1 phosphorylation also required the PKC1 pathway kinases Bck1 and Mkk2. However, Pkc1, thought to be the major regulatory kinase of the cell integrity pathway, was dispensable for this response. Together, our results argue that Rho proteins likely interact via downstream components of the PKC1 pathway or by alternative pathways to activate the cell integrity pathway in C. neoformans.


Asunto(s)
Cryptococcus neoformans/enzimología , Proteínas Fúngicas/metabolismo , Proteína Quinasa C/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Pared Celular/enzimología , Pared Celular/fisiología , Secuencia Conservada , Cryptococcus neoformans/genética , Cryptococcus neoformans/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Técnicas de Inactivación de Genes , Respuesta al Choque Térmico , Sistema de Señalización de MAP Quinasas , Melaninas/biosíntesis , Viabilidad Microbiana , Proteínas Quinasas Activadas por Mitógenos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estrés Oxidativo , Fenotipo , Fosforilación , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/fisiología
6.
Eukaryot Cell ; 12(1): 12-22, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23087368

RESUMEN

Cryptococcus neoformans PKH2-01 and PKH2-02 are orthologous to mammalian PDK1 kinase genes. Although orthologs of these kinases have been extensively studied in S. cerevisiae, little is known about their function in pathogenic fungi. In this study, we show that PKH2-02 but not PKH2-01 is required for C. neoformans to tolerate cell wall, oxidative, nitrosative, and antifungal drug stress. Deletion of PKH2-02 leads to decreased basal levels of Pkc1 activity and, consequently, reduced activation of the cell wall integrity mitogen-activated protein kinase (MAPK) pathway in response to cell wall, oxidative, and nitrosative stress. PKH2-02 function also is required for tolerance of fluconazole and amphotericin B, two important drugs for the treatment of cryptococcosis. Furthermore, OSU-03012, an inhibitor of human PDK1, is synergistic and fungicidal in combination with fluconazole. Using a Galleria mellonella model of low-temperature cryptococcosis, we found that PKH2-02 is also required for virulence in a temperature-independent manner. Consistent with the hypersensitivity of the pkh2-02Δ mutant to oxidative and nitrosative stress, this mutant shows decreased survival in murine phagocytes compared to that of wild-type (WT) cells. In addition, we show that deletion of PKH2-02 affects the interaction between C. neoformans and phagocytes by decreasing its ability to suppress production of tumor necrosis factor alpha (TNF-α) and reactive oxygen species. Taken together, our studies demonstrate that Pkh2-02-mediated signaling in C. neoformans is crucial for stress tolerance, host-pathogen interactions, and both temperature-dependent and -independent virulence.


Asunto(s)
Cryptococcus neoformans/enzimología , Macrófagos/fisiología , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Antifúngicos/farmacología , Pared Celular/enzimología , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/patogenicidad , Farmacorresistencia Fúngica , Fluconazol/farmacología , Larva/microbiología , Macrófagos/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana , Mariposas Nocturnas/microbiología , Fagocitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Pirazoles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Sulfonamidas/farmacología , Virulencia
7.
Methods Mol Biol ; 2775: 277-303, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758325

RESUMEN

Cryptococcus neoformans is an opportunistic human fungal pathogen capable of surviving in a wide range of environments and hosts. It has been developed as a model organism to study fungal pathogenesis due to its fully sequenced haploid genome and optimized gene deletion and mutagenesis protocols. These methods have greatly aided in determining the relationship between Cryptococcus genotype and phenotype. Furthermore, the presence of congenic mata and matα strains associated with a defined sexual cycle has helped further understand cryptococcal biology. Several in vitro stress conditions have been optimized to closely mimic the stress that yeast encounter in the environment or within the infected host. These conditions have proven to be extremely useful in elucidating the role of several genes in allowing yeast to adapt and survive in hostile external environments. This chapter describes various in vitro stress conditions that could be used to test the sensitivity of different mutant strains, as well as the protocol for preparing them. We have also included a list of mutants that could be used as a positive control strain when testing the sensitivity of the desired strain to a specific stress.


Asunto(s)
Cryptococcus neoformans , Fenotipo , Estrés Fisiológico , Cryptococcus neoformans/genética , Cryptococcus neoformans/fisiología , Estrés Fisiológico/genética , Humanos , Mutación , Criptococosis/microbiología
8.
Front Immunol ; 15: 1356651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469300

RESUMEN

Cryptococcus neoformans and C. gattii, the etiologic agents of cryptococcosis, cause over 100,000 deaths worldwide every year, yet no cryptococcal vaccine has progressed to clinical trials. In preclinical studies, mice vaccinated with an attenuated strain of C. neoformans deleted of three cryptococcal chitin deacetylases (Cn-cda1Δ2Δ3Δ) were protected against a lethal challenge with C. neoformans strain KN99. While Cn-cda1Δ2Δ3Δ extended the survival of mice infected with C. gattii strain R265 compared to unvaccinated groups, we were unable to demonstrate fungal clearance as robust as that seen following KN99 challenge. In stark contrast to vaccinated mice challenged with KN99, we also found that R265-challenged mice failed to induce the production of protection-associated cytokines and chemokines in the lungs. To investigate deficiencies in the vaccine response to R265 infection, we developed a KN99-R265 coinfection model. In unvaccinated mice, the strains behaved in a manner which mirrored single infections, wherein only KN99 disseminated to the brain and spleen. We expanded the coinfection model to Cn-cda1Δ2Δ3Δ-vaccinated mice. Fungal burden, cytokine production, and immune cell infiltration in the lungs of vaccinated, coinfected mice were indicative of immune evasion by C. gattii R265 as the presence of R265 neither compromised the immunophenotype established in response to KN99 nor inhibited clearance of KN99. Collectively, these data indicate that R265 does not dampen a protective vaccine response, but rather suggest that R265 remains largely undetected by the immune system.


Asunto(s)
Coinfección , Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Vacunas , Ratones , Animales , Evasión Inmune
9.
Methods Mol Biol ; 2775: 329-347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758327

RESUMEN

The cell wall of the fungal pathogens Cryptococcus neoformans and C. gattii is critical for cell wall integrity and signaling external threats to the cell, allowing it to adapt and grow in a variety of changing environments. Chitin is a polysaccharide found in the cell walls of fungi that is considered to be essential for fungal survival. Chitosan is a polysaccharide derived from chitin via deacetylation that is also essential for cryptococcal cell wall integrity, fungal pathogenicity, and virulence. Cryptococcus has evolved mechanisms to regulate the amount of chitin and chitosan during growth under laboratory conditions or during mammalian infection. Therefore, levels of chitin and chitosan have been useful phenotypes to define mutant Cryptococcus strains. As a result, we have developed and/or refined various qualitative and quantitative methods for measuring chitin and chitosan. These techniques include those that use fluorescent probes that are known to bind to chitin (e.g., calcofluor white and wheat germ agglutinin), as well as those that preferentially bind to chitosan (e.g., eosin Y and cibacron brilliant red 3B-A). Techniques that enhance the localization and quantification of chitin and chitosan in the cell wall include (i) fluorescence microscopy, (ii) flow cytometry, (iii) and spectrofluorometry. We have also modified two highly selective biochemical methods to measure cellular chitin and chitosan content: the Morgan-Elson and the 3-methyl-2-benzothiazolone hydrazine hydrochloride (MBTH) assays, respectively.


Asunto(s)
Pared Celular , Quitina , Quitosano , Quitina/metabolismo , Quitina/química , Quitina/análisis , Quitosano/química , Quitosano/metabolismo , Pared Celular/metabolismo , Pared Celular/química , Cryptococcus neoformans/metabolismo , Colorantes Fluorescentes/química , Cryptococcus/metabolismo , Microscopía Fluorescente/métodos
10.
Methods Mol Biol ; 2775: 393-410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758333

RESUMEN

Creating a safe and effective vaccine against infection by the fungal pathogen Cryptococcus neoformans is an appealing option that complements the discovery of new small molecule antifungals. Recent animal studies have yielded promising results for a variety of vaccines that include live-attenuated and heat-killed whole-cell vaccines, as well as subunit vaccines formulated around recombinant proteins. Some of the recombinantly engineered cryptococcal mutants in the chitosan biosynthesis pathway are avirulent and very effective at conferring protective immunity. Mice vaccinated with these avirulent chitosan-deficient strains are protected from a lethal pulmonary infection with C. neoformans strain KN99. Heat-killed derivatives of the vaccination strains are likewise effective in a murine model of infection. The efficacy of these whole-cell vaccines, however, is dependent on a number of factors, including the inoculation dose, route of vaccination, frequency of vaccination, and the specific mouse strain used in the study. Here, we present detailed methods for identifying and optimizing various factors influencing vaccine potency and efficacy in various inbred mouse strains using a chitosan-deficient cda1Δcda2Δcda3Δ strain as a whole-cell vaccine candidate. This chapter describes the protocols for immunizing three different laboratory mouse strains with vaccination regimens that use intranasal, orotracheal, and subcutaneous vaccination routes after the animals were sedated using two different types of anesthesia.


Asunto(s)
Quitosano , Criptococosis , Cryptococcus neoformans , Vacunas Fúngicas , Animales , Quitosano/química , Ratones , Vacunas Fúngicas/inmunología , Vacunas Fúngicas/genética , Vacunas Fúngicas/administración & dosificación , Criptococosis/inmunología , Criptococosis/prevención & control , Criptococosis/microbiología , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/genética , Modelos Animales de Enfermedad , Vacunación/métodos , Femenino , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/genética
11.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915489

RESUMEN

The global burden of infections due to the pathogenic fungus Cryptococcus is substantial in persons with low CD4 + T cell counts. Previously, we deleted three chitin deacetylase genes from C. neoformans to create a chitosan-deficient, avirulent strain, designated cda1Δ2Δ3Δ which, when used as a vaccine, protected mice from challenge with virulent C. neoformans strain KN99. Here, we explored the immunological basis for protection. Vaccine-mediated protection was maintained in mice lacking B cells or CD8 + T cells. In contrast, protection was lost in mice lacking α/ß T cells or CD4 + T cells. Moreover, CD4 + T cells from vaccinated mice conferred protection upon adoptive transfer to naive mice. Importantly, while monoclonal antibody-mediated depletion of CD4 + T cells just prior to vaccination resulted in complete loss of protection, significant protection was retained in mice depleted of CD4 + T cells after vaccination, but prior to challenge. Vaccine-mediated protection was lost in mice genetically deficient in IFNγ, TNFα, or IL-23p19. A robust influx of leukocytes and IFNγ- and TNFα-expressing CD4 + T cells was seen in the lungs of vaccinated and challenged mice. Finally, a higher level of IFNγ production by lung cells stimulated ex vivo correlated with lower fungal burden in the lungs. Thus, while B cells and CD8 + T cells are dispensable, IFNγ and CD4 + T cells have overlapping roles in generating protective immunity prior to cda1Δ2Δ3Δ vaccination. However, once vaccinated, protection becomes less dependent on CD4 + T cells, suggesting a strategy for vaccinating HIV + persons prior to loss of CD4 + T cells. Importance: The fungus Cryptococcus neoformans is responsible for >100,000 deaths annually, mostly in persons with impaired CD4 + T cell function such as AIDS. There are no approved human vaccines. We previously created a genetically engineered avirulent strain of C. neoformans , designated cda1Δ2Δ3Δ . When used as a vaccine, cda1Δ2Δ3Δ protects mice against a subsequent challenge with a virulent C. neoformans strain. Here, we defined components of the immune system responsible for vaccine-mediated protection. We found that while B cells and CD8 + T cells were dispensible, protection was lost in mice genetically deficient in CD4 + T cells, and the cytokines IFNγ, TNFα, or IL-23. A robust influx of cytokine-producing CD4 + T cells was seen in the lungs of vaccinated mice following infection. Importantly, protection was retained in mice depleted of CD4 + T cells following vaccination, suggesting a strategy to protect persons who are at risk for future CD4 + T cell dysfunction.

12.
Artículo en Inglés | MEDLINE | ID: mdl-37538303

RESUMEN

Introduction: Cryptococcus neoformans is a basidiomycete fungus that can cause meningoencephalitis, especially in immunocompromised patients. Cryptococcus grows in many different media, although little attention has been paid to the role of growth conditions on the cryptococcal cell wall or on virulence. Objective: The purpose of this study was to determine how different media influenced the amount of chitin and chitosan in the cell wall, which in turn impacted the cell wall architecture and host response. Methods: Yeast extract, peptone, and dextrose (YPD) and yeast nitrogen base (YNB) are two commonly used media for growing Cryptococcus before use in in vitro or in vivo experiments. As a result, C. neoformans was grown in either YPD or YNB, which were either left unbuffered or buffered to pH 7 with MOPS. These cells were then labeled with cell wall-specific fluorescent probes to determine the amounts of various cell wall components. In addition, these cells were employed in animal virulence studies using the murine inhalation model of infection. Results: We observed that the growth of wild-type C. neoformans KN99 significantly changes the pH of unbuffered media during growth. It raises the pH to 8.0 when grown in unbuffered YPD but lowers the pH to 2.0 when grown in unbuffered YNB (YNB-U). Importantly, the composition of the cell wall was substantially impacted by growth in different media. Cells grown in YNB-U exhibited a 90% reduction in chitosan, the deacetylated form of chitin, compared with cells grown in YPD. The decrease in pH and chitosan in the YNB-U-grown cells was associated with a significant increase in some pathogen-associated molecular patterns on the surface of cells compared with cells grown in YPD or YNB, pH 7. This altered cell wall architecture resulted in a significant reduction in virulence when tested using a murine model of infection. Furthermore, when heat-killed cells were used as the inoculum, KN99 cells grown in YNB-U caused an aberrant hyper-inflammatory response in the lungs, resulting in rapid animal death. In contrast, heat-killed KN99 cells grown in YNB, pH 7, caused little to no inflammatory response in the host lung, but, when used as a vaccine, they conferred a robust protective response against a subsequent challenge infection with the virulent KN99 cells. Conclusion: These findings emphasize the importance of culture media and pH during growth in shaping the content and organization of the C. neoformans cell wall, as well as their impact on fungal virulence and the host response.

13.
Eukaryot Cell ; 10(9): 1264-8, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21784998

RESUMEN

Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host.


Asunto(s)
Pared Celular/genética , Quitosano/metabolismo , Criptococosis/microbiología , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Virulencia/genética , Animales , Pared Celular/metabolismo , Quitina/genética , Quitina/metabolismo , Criptococosis/patología , Cryptococcus neoformans/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Glucanos/genética , Glucanos/metabolismo , Ratones , Mutación
14.
mSphere ; 7(4): e0013422, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35758672

RESUMEN

The fungal pathogen Cryptococcus neoformans causes up to 278 000 infections each year globally, resulting in up to 180,000 deaths annually, mostly impacting immunocompromised people. Therapeutic options for C. neoformans infections are very limited. Caspofungin, a member of the echinocandin class of antifungals, is generally well tolerated but clinically ineffective against C. neoformans. We sought to identify biological processes that can be targeted to render the cell more susceptible to echinocandins by screening the available libraries of gene deletion mutants made in the KN99α background for caspofungin sensitivity. We adapted a Candida albicans fungal biofilm assay for the growth characteristics of C. neoformans and systematically screened 4,030 individual gene deletion mutants in triplicate plate assays. We identified 25 strains that showed caspofungin sensitivity. We followed up with a dose dependence assay, and 17 of the 25 were confirmed sensitive, 5 of which were also sensitive in an agar plate assay. We made new deletion mutant strains for four of these genes: CFT1, encoding an iron transporter; ERG4, encoding a sterol desaturase; MYO1, encoding a myosin heavy chain; and YSP2, encoding a sterol transporter. All were more sensitive to membrane stress and showed significantly increased sensitivity to caspofungin at higher temperatures. Surprisingly, none showed any obvious cell wall defects such as would be expected for caspofungin-sensitive strains. Our microscopy analyses suggested that loss of membrane integrity contributed to the caspofungin sensitivity, either by allowing more caspofungin to enter or remain in the cell or by altering the location or orientation of the enzyme target to render it more susceptible to inhibition. IMPORTANCE The intrinsic resistance of Cryptococcus neoformans to the cell wall inhibitor caspofungin limits the available therapies for treating cryptococcal infections. We screened a collection of more than 4,000 gene deletion strains for altered caspofungin sensitivity to identify biological processes that could be targeted to render the cell more susceptible to caspofungin. We identified multiple genes with an effect on caspofungin susceptibility and found that they were associated with altered membrane permeability rather than the expected cell wall defects. This suggests that targeting these genes or other genes affecting membrane permeability is a viable path for developing novel therapies for treating this global fungal pathogen.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Caspofungina/farmacología , Pared Celular/metabolismo , Equinocandinas/farmacología , Esteroles
15.
Mol Microbiol ; 76(2): 517-34, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20384682

RESUMEN

The polysaccharide beta-1,6-glucan is a major component of the cell wall of Cryptococcus neoformans, but its function has not been investigated in this fungal pathogen. We have identified and characterized seven genes, belonging to the KRE family, which are putatively involved in beta-1,6-glucan synthesis. The H99 deletion mutants kre5Delta and kre6Deltaskn1Delta contained less cell wall beta-1,6-glucan, grew slowly with an aberrant morphology, were highly sensitive to environmental and chemical stress and were avirulent in a mouse inhalation model of infection. These two mutants displayed alterations in cell wall chitosan and the exopolysaccharide capsule, a primary cryptococcal virulence determinant. The cell wall content of the GPI-anchored phospholipase B1 (Plb1) enzyme, which is required for cryptococcal cell wall integrity and virulence, was reduced in kre5Delta and kre6Deltaskn1Delta. Our results indicate that KRE5, KRE6 and SKN1 are involved in beta-1,6-glucan synthesis, maintenance of cell wall integrity and retention of mannoproteins and known cryptococcal virulence factors in the cell wall of C. neoformans. This study sets the stage for future investigations into the function of this abundant cell wall polymer.


Asunto(s)
Pared Celular/metabolismo , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Polisacáridos/metabolismo , beta-Glucanos/metabolismo , Animales , Arquitectura , Criptococosis/microbiología , Criptococosis/patología , Cryptococcus neoformans/citología , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Modelos Animales de Enfermedad , Proteínas Fúngicas/genética , Eliminación de Gen , Mantenimiento , Ratones , Unión Proteica , Análisis de Supervivencia , Virulencia
16.
Eukaryot Cell ; 9(6): 971-80, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20400467

RESUMEN

The opportunistic intracellular fungal pathogen Cryptococcus neoformans depends on many antioxidant and denitrosylating proteins and pathways for virulence in the immunocompromised host. These include the glutathione and thioredoxin pathways, thiol peroxidase, cytochrome c peroxidase, and flavohemoglobin denitrosylase. All of these ultimately depend on NADPH for either catalytic activity or maintenance of a reduced, functional form. The need for NADPH during oxidative stress is well established in many systems, but a role in resistance to nitrosative stress has not been as well characterized. In this study we investigated the roles of two sources of NADPH, glucose-6-phosphate dehydrogenase (Zwf1) and NADP(+)-dependent isocitrate dehydrogenase (Idp1), in production of NADPH and resistance to oxidative and nitrosative stress. Deletion of ZWF1 in C. neoformans did not result in an oxidative stress sensitivity phenotype or changes in the amount of NADPH produced during oxidative stress compared to those for the wild type. Deletion of IDP1 resulted in greater sensitivity to nitrosative stress than to oxidative stress. The amount of NADPH increased 2-fold over that in the wild type during nitrosative stress, and yet the idp1Delta strain accumulated more mitochondrial damage than the wild type during nitrosative stress. This is the first report of the importance of Idp1 and NADPH for nitrosative stress resistance.


Asunto(s)
Cryptococcus neoformans/enzimología , Glucosafosfato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Cryptococcus neoformans/metabolismo , Glucosafosfato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/genética , NADP/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Nitrito de Sodio/metabolismo
17.
Cell Surf ; 7: 100066, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34712865

RESUMEN

Chitosan, a deacetylated form of chitin, is required for the virulence of Cryptococcus neoformans. There are three chitin deacetylase genes (CDA) that are essential for chitosan production, and deletion of all three genes results in the absence of chitosan, loss of virulence, and induction of a protective host response when used as a vaccine. Cda1 plays a major role in deacetylating chitin during pulmonary infection of CBA/J mice. Inoculation with the cda1Δ strain did not lead to a lethal infection. However, the infection was not cleared. The persistence of the fungus in the host suggests that chitin is still being deacetylated by Cda2 and/or Cda3. To test this hypothesis, we subjected strains deleted of two CDA genes to fungal virulence in CBA/J, C57BL/6 and BALB/c and found that cda1Δcda2Δ was avirulent in all mouse lines, as evidenced by its complete clearance. Consistent with the major role of Cda1 in CBA/J, we found that cda2Δcda3Δ was as virulent as its wild-type progenitor KN99. On the other hand, cda1Δcda3Δ displayed virulence comparable to that of cda1Δ. The virulence of each mutant correlates with the amount of chitosan produced when grown under host-mimicking culture conditions. In addition, the avirulence of cda1Δcda2Δ was followed by the induction of a protective immune response in C57BL/6 and CBA/J mice, when a live or heat-killed form of the mutant was used as a vaccine respectively. Taken together, these data imply that, in C. neoformans, coordinated activity of both Cda1 and Cda2 is essential for mediating fungal virulence.

18.
Fungal Genet Biol ; 47(3): 191-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19944774

RESUMEN

Cryptococcus neoformans is an opportunistic fungal pathogen that primarily affects immunocompromised individuals. Reverse genetics is commonly used to identify and characterize genes involved in a variety of cellular processes. In C. neoformans there is a limited set of positive selectable markers available to make gene deletions or other genetic manipulations. This has hampered the application of reverse genetics in this organism. We have adapted the Bacteriophage P1 Cre-loxP system for use in C. neoformans and successfully excised and reused the same drug marker, G418, to make two sequential gene deletions, lac1Delta and cap59Delta, in the same strain. This tool will allow investigators to make multiple sequential gene deletions in the same strain, which should facilitate the analysis of multigene families.


Asunto(s)
Cryptococcus neoformans/genética , Eliminación de Gen , Gentamicinas/farmacología , Cromosomas Fúngicos , Cryptococcus neoformans/efectos de los fármacos , ADN de Hongos/química , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Marcadores Genéticos , Vectores Genéticos , Genoma Fúngico , Integrasas/genética , Datos de Secuencia Molecular , Familia de Multigenes , Mutagénesis Insercional , Fenotipo , Proteínas Recombinantes de Fusión/metabolismo
19.
Eukaryot Cell ; 8(11): 1692-705, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19734369

RESUMEN

Cryptococcus neoformans is an opportunistic pathogen that mainly infects immunocompromised individuals. The fungal cell wall of C. neoformans is an excellent target for antifungal therapies since it is an essential organelle that provides cell structure and integrity. Importantly, it is needed for localization or attachment of known virulence factors, including melanin, phospholipase, and the polysaccharide capsule. The polysaccharide fraction of the cryptococcal cell wall is a complex structure composed of chitin, chitosan, and glucans. Chitin is an indispensable component of many fungal cell walls that contributes significantly to cell wall strength and integrity. Fungal cell walls are very dynamic, constantly changing during cell division and morphogenesis. Hydrolytic enzymes, such as chitinases, have been implicated in the maintenance of cell wall plasticity and separation of the mother and daughter cells at the bud neck during vegetative growth in yeast. In C. neoformans we identified four predicted endochitinases, CHI2, CHI21, CHI22, and CHI4, and a predicted exochitinase, hexosaminidase, HEX1. Enzymatic analysis indicated that Chi2, Chi22, and Hex1 actively degraded chitinoligomeric substrates. Chi2 and Hex1 activity was associated mostly with the cellular fraction, and Chi22 activity was more prominent in the supernatant. The enzymatic activity of Hex1 increased when grown in media containing only N-acetylglucosamine as a carbon source, suggesting that its activity may be inducible by chitin degradation products. Using a quadruple endochitinase deletion strain, we determined that the endochitinases do not affect the growth or morphology of C. neoformans during asexual reproduction. However, mating assays indicated that Chi2, Chi21, and Chi4 are each involved in sexual reproduction. In summary, the endochitinases were found to be dispensable for routine vegetative growth but not sexual reproduction.


Asunto(s)
Quitinasas/metabolismo , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Quitinasas/genética , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Reproducción Asexuada
20.
mBio ; 11(1)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071275

RESUMEN

Cryptococcus neoformans infections are significant causes of morbidity and mortality among AIDS patients and the third most common invasive fungal infection in organ transplant recipients. One of the main interfaces between the fungus and the host is the fungal cell wall. The cryptococcal cell wall is unusual among human-pathogenic fungi in that the chitin is predominantly deacetylated to chitosan. Chitosan-deficient strains of C. neoformans were found to be avirulent and rapidly cleared from the murine lung. Moreover, infection with a chitosan-deficient C. neoformans strain lacking three chitin deacetylases (cda1Δcda2Δcda3Δ) was found to confer protective immunity to a subsequent challenge with a virulent wild-type counterpart. In addition to the chitin deacetylases, it was previously shown that chitin synthase 3 (Chs3) is also essential for chitin deacetylase-mediated formation of chitosan. Mice inoculated with the chs3Δ strain at a dose previously shown to induce protection with the cda1Δcda2Δcda3Δ strain die within 36 h after installation of the organism. Mortality was not dependent on viable fungi, as mice inoculated with a heat-killed preparation of the chs3Δ strain died at the same rate as mice inoculated with a live chs3Δ strain, suggesting that the rapid onset of death was host mediated, likely caused by an overexuberant immune response. Histology, cytokine profiling, and flow cytometry indicate a massive neutrophil influx in the mice inoculated with the chs3Δ strain. Mice depleted of neutrophils survived chs3Δ inoculation, indicating that death was neutrophil mediated. Altogether, these studies lead us to conclude that Chs3, along with chitosan, plays critical roles in dampening cryptococcus-induced host inflammatory responses.IMPORTANCECryptococcus neoformans is the most common disseminated fungal pathogen in AIDS patients, resulting in ∼200,000 deaths each year. There is a pressing need for new treatments for this infection, as current antifungal therapy is hampered by toxicity and/or the inability of the host's immune system to aid in resolution of the disease. An ideal target for new therapies is the fungal cell wall. The cryptococcal cell wall is different from the cell walls of many other pathogenic fungi in that it contains chitosan. Strains that have decreased chitosan are less pathogenic and strains that are deficient in chitosan are avirulent and can induce protective responses. In this study, we investigated the host responses to a chs3Δ strain, a chitosan-deficient strain, and found that mice inoculated with the chs3Δ strain all died within 36 h and that death was associated with an aberrant hyperinflammatory immune response driven by neutrophils, indicating that chitosan is critical in modulating the immune response to Cryptococcus.


Asunto(s)
Quitina Sintasa/genética , Quitina Sintasa/metabolismo , Quitina/metabolismo , Criptococosis/inmunología , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/genética , Inflamación/inmunología , Síndrome de Inmunodeficiencia Adquirida/complicaciones , Amidohidrolasas , Animales , Proteínas Adaptadoras de Señalización CARD , Pared Celular/metabolismo , Quimiocinas/metabolismo , Quitosano/inmunología , Criptococosis/microbiología , Criptococosis/mortalidad , Cryptococcus neoformans/patogenicidad , Citocinas/metabolismo , Modelos Animales de Enfermedad , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide , Neutrófilos/inmunología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA