Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev Cardiovasc Med ; 23(11): 377, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39076179

RESUMEN

Hemodynamics interacts with the cellular components of human vessels, influencing function and healthy status. Locally acting hemodynamic forces have been associated-by a steadily increasing amount of scientific evidence-with nucleation and evolution of atherosclerotic plaques in several vascular regions, resulting in the formulation of the 'hemodynamic risk hypothesis' of the atherogenesis. At the level of coronary arteries, however, the complexity of both anatomy and physiology made the study of this vascular region particularly difficult for researchers. Developments in computational fluid dynamics (CFD) have recently allowed an accurate modelling of the intracoronary hemodynamics, thus offering physicians a unique tool for the investigation of this crucial human system by means of advanced mathematical simulations. The present review of CFD applications in coronary artery disease was set to concisely offer the medical reader the theoretical foundations of quantitative intravascular hemodynamics-reasoned schematically in the text in its basic (i.e., pressure and velocity) and derived quantities (e.g., fractional flow reserve, wall shear stress and helicity)-along with its current implications in clinical research. Moreover, attention was paid in classifying computational modelling derived from invasive and non-invasive imaging modalities with unbiased remarks on the advantages and limitations of each procedure. Finally, an extensive description-aided by explanatory figures and cross references to recent clinical findings-was presented on the role of near-wall hemodynamics, in terms of shear stress, and of intravascular flow complexity, in terms of helical flow.

2.
Comput Methods Programs Biomed ; 255: 108369, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39146759

RESUMEN

BACKGROUND AND OBJECTIVE: The evidence on the role of hemodynamics in aorta pathophysiology has yet to be robustly translated into clinical applications, to improve risk stratification of aortic diseases. Motivated by the need to enrich the current understanding of the pathophysiology of the ascending aorta (AAo), this study evaluates in vivo how large-scale aortic flow coherence is affected by AAo dilation and aortic valve phenotype. METHODS: A complex networks-based approach is applied to 4D flow MRI data to quantify subject-specific AAo flow coherence in terms of correlation between axial velocity waveforms and the aortic flow rate waveform along the cardiac cycle. The anatomical length of persistence of such correlation is quantified using the recently proposed network metric average weighted curvilinear distance (AWCD). The analysis considers 107 subjects selected to allow an ample stratification in terms of aortic valve morphology, absence/presence of AAo dilation and of aortic valve stenosis. RESULTS: The analysis highlights that the presence of AAo dilation as well as of bicuspid aortic valve phenotype breaks the physiological AAo flow coherence, quantified in terms of AWCD. Of notice, it emerges that cycle-average blood flow rate and relative AAo dilation are main determinants of AWCD, playing opposite roles in promoting and hampering the persistence of large-scale flow coherence in AAo, respectively. CONCLUSIONS: The findings of this study can contribute to broaden the current mechanistic link between large-scale blood flow coherence and aortic pathophysiology, with the prospect of enriching the existing tools for the in vivo non-invasive hemodynamic risk assessment for aortic diseases onset and progression.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38427153

RESUMEN

This study focuses on identifying anatomical markers with predictive capacity for long-term myocardial infarction (MI) in focal coronary artery disease (CAD). Eighty future culprit lesions (FCL) and 108 non-culprit lesions (NCL) from 80 patients underwent 3D quantitative coronary angiography. The minimum lumen area (MLA), minimum lumen ratio (MLR), and vessel fractional flow reserve (vFFR) were evaluated. MLR was defined as the ratio between MLA and the cross-sectional area at the proximal lesion edge, with lower values indicating more abrupt luminal narrowing. Significant differences were observed between FCL and NCL in MLR (0.41 vs. 0.53, p < 0.001). MLR correlated inversely with translesional vFFR (r = - 0.26, p = 0.0004) and was the strongest predictor of MI at 5 years (AUC = 0.75). Lesions with MLR < 0.40 had a fourfold increased MI incidence at 5 years. MLR is a robust predictor of future adverse coronary events.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA