Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(8): 4021-4026, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32029594

RESUMEN

Hydrogen-containing materials are of fundamental as well as technological interest. An outstanding question for both is the amount of hydrogen that can be incorporated in such materials, because that determines dramatically their physical properties such as electronic and crystalline structure. The number of hydrogen atoms in a metal is controlled by the interaction of hydrogens with the metal and by the hydrogen-hydrogen interactions. It is well established that the minimal possible hydrogen-hydrogen distances in conventional metal hydrides are around 2.1 Å under ambient conditions, although closer H-H distances are possible for materials under high pressure. We present inelastic neutron scattering measurements on hydrogen in [Formula: see text] showing nonexpected scattering at low-energy transfer. The analysis of the spectra reveals that these spectral features in part originate from hydrogen vibrations confined by neighboring hydrogen at distances as short as 1.6 Å. These distances are much smaller than those found in related hydrides, thereby violating the so-called Switendick criterion. The results have implications for the design and creation of hydrides with additional properties and applications.

2.
Inorg Chem ; 61(15): 5813-5823, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35363480

RESUMEN

The crystal structures of three thermal polymorphs (I, II, and III) for each isomer of closo-dicarbadodecaboranes C2B10H12 (ortho, meta, and para) have been determined by combining synchrotron radiation X-ray powder diffraction and density functional theory calculations. The structures are in agreement with previous calorimetric and spectroscopic studies. The difference between rotatory phases (plastic crystals) I and II lies in isotropic rotations in the former and anisotropic rotations of the icosahedral clusters in the latter. Phase I is the cubic close packing (ccp) of rotating closo-molecules C2B10H12 in the space group Fm3̅. Phase II is the ccp of rotating closo-molecules C2B10H12 in the cubic space group Pa3̅. The preferred rotational axis in II varies with the isomer. The ordered phases III are orthorhombic (meta) or monoclinic (ortho and para) deformations of the cubic unit cell of the disordered phases I and II. The ordering in the phase III of the ortho-isomer carrying the biggest electrical dipole moment creates a twofold superstructure w.r.t. the cubic unit cell. The thermal polymorphism for C2B10H12 and related metal salts can be explained by division of the cohesive intercluster interactions into two categories (i) dispersive cohesive interaction with additional Coulombic components in the metal salts and (ii) anisotropic local interaction resulting from nonuniform charge distribution around icosahedral clusters. The local interactions are averaged out by thermally activated cluster dynamics (rotations and rotational jumps) which effectively increase the symmetry of the cluster. The C2B10H12 molecules resist at least as well as the CB11H12- anion to the oxidation, and both clusters form easily a mixed compound. This allows designing solid electrolytes such as Nax(CB11H12)x(C2B10H12)1-x, where the cation content may be varied and the temperature of transition into the disordered conducting phase is decreased.

3.
Inorg Chem ; 61(13): 5224-5233, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35324183

RESUMEN

In this work, we report on the structural properties of alkali hydrido-closo-(car)borates, a promising class of solid-state electrolyte materials, using high-pressure and temperature-dependent X-ray diffraction experiments combined with density functional theory (DFT) calculations. The mechanical properties are determined via pressure-dependent diffraction studies and DFT calculations; the shear moduli appear to be very low for all studied compounds, revealing their high malleability (that can be beneficial for the manufacturing and stable cycling of all-solid-state batteries). The thermodiffraction experiments also reveal a high coefficient of thermal expansion for these materials. We discover a pressure-induced phase transition for K2B12H12 from Fm3̅ to Pnnm symmetry around 2 GPa. A temperature-induced phase transition for Li2B10H10 was also observed for the first time by thermodiffraction, and the crystal structure determined by combining experimental data and DFT calculations. Interestingly, all phases of the studied compounds (including newly discovered high-pressure and high-temperature phases) may be related via a group-subgroup relationship, with the notable exception of the room-temperature phase of Li2B10H10.

4.
Phys Chem Chem Phys ; 20(48): 30140-30149, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30306973

RESUMEN

Solid state closo-borane salts of alkali metals have very high ionic conductivity. This makes them interesting for practical applications as solid state electrolytes, and has triggered extensive research efforts. Improvement and understanding of their properties require accurate theoretical description of their static and dynamical properties. In this work, we report accuracy assessment of density functional theory in the description of solids with B12H122- anions. We show that these aromatic anions interact via weak dispersive forces. For that reason, non-local exchange-correlation functionals give better description of structural properties and phonons in Li2B12H12 and Na2B12H12. Numerically efficient semi-local methods provide satisfactory results when applied in structure volumes obtained in a non-local method. An extensive structural search for stable crystalline phases of MgB12H12 predicts a new denser lattice with C2/c symmetry that is stabilized by van der Waals interactions. These structures might be discovered as anhydrous MgB12H12 in high pressure experiments, avoiding the amorphous state at ambient pressures.

5.
Inorg Chem ; 56(9): 5006-5016, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28398061

RESUMEN

Three different types of anion packing, i.e., hexagonal close packed (hcp), cubic close packed (ccp), and body centered cubic (bcc), are investigated experimentally and with ab initio calculations in the model system Na2B12H12. Solvent free and water assisted mechanical grinding provide polycrystalline samples for temperature-dependent synchrotron radiation X-ray powder diffraction and electrochemical impedance spectroscopy. It is shown that among the common close packed lattices, the hcp anionic backbone creates very favorable conditions for three-dimensional ionic conduction pathways, comprised of O-O, T-T, and T-O-T (O for octahedral, T for tetrahedral) cation hops. The hcp lattice is stable with respect to ccp and bcc lattices only at higher volumes per formula unit, which is achieved either by cationic substitution with larger cations or partial substitution of hydrogen by iodine on the closo-anion. It is found that the partial cationic substitution of sodium with lithium, potassium, or cesium does not lead to enhanced conductivity due to the obstruction of the conduction pathway by the larger cation located on the octahedral site. Substitution on the closo-anion itself shows remarkable positive effects, the ionic conductivity of Na2B12H12-xIx reaching values of close to 10-1 S cm-1 at a rather low temperature of 360 K. While the absolute value of σ is comparable to that of NaCB11H12, the temperature at which it is attained is approximately 20 K lower. The activation energy of 140 meV is determined from the Arrhenius relation and among the lowest ever reported for a Na-conducting solid.

6.
Chemistry ; 21(41): 14562-70, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26306666

RESUMEN

The first Al-based amidoborane Na[Al(NH2 BH3 )4 ] was obtained through a mechanochemical treatment of the NaAlH4 -4 AB (AB=NH3 BH3 ) composite releasing 4.5 wt % of pure hydrogen. The same amidoborane was also produced upon heating the composite at 70 °C. The crystal structure of Na[Al(NH2 BH3 )4 ], elucidated from synchrotron X-ray powder diffraction and confirmed by DFT calculations, contains the previously unknown tetrahedral ion [Al(NH2 BH3 )4 ](-) , with every NH2 BH3 (-) ligand coordinated to aluminum through nitrogen atoms. Combination of complex and chemical hydrides in the same compound was possible due to both the lower stability of the AlH bonds compared to the BH ones in borohydride, and due to the strong Lewis acidity of Al(3+) . According to the thermogravimetric analysis-differential scanning calorimetry-mass spectrometry (TGA-DSC-MS) studies, Na[Al(NH2 BH3 )4 ] releases in two steps 9 wt % of pure hydrogen. As a result of this decomposition, which was also supported by volumetric studies, the formation of NaBH4 and amorphous product(s) of the surmised composition AlN4 B3 H(0-3.6) were observed. Furthermore, volumetric experiments have also shown that the final residue can reversibly absorb about 27 % of the released hydrogen at 250 °C and p(H2 )=150 bar. Hydrogen re-absorption does not regenerate neither Na[Al(NH2 BH3 )4 ] nor starting materials, NaAlH4 and AB, but rather occurs within amorphous product(s). Detailed studies of the latter one(s) can open an avenue for a new family of reversible hydrogen storage materials. Finally, the NaAlH4 -4 AB composite might become a starting point towards a new series of aluminum-based tetraamidoboranes with improved hydrogen storage properties such as hydrogen storage density, hydrogen purity, and reversibility.

7.
Adv Sci (Weinh) ; 11(7): e2304603, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070182

RESUMEN

Provision of atomic hydrogen by hydrogen dissociation catalysts only moderately accelerates the hydrogenation rate of magnesium. They shed light on this well-known but technically challenging fact through a combined approach using an unconventional surface science technique together with Density Functional Theory (DFT) calculations. The calculations demonstrate the drastic electronic structure changes during transformation of Mg to MgH2 , which make fractional hydrogen coverage on the surface, as well as substoichiometric hydrogen content in the bulk energetically unfavorable. Reflecting Electron Energy Loss Spectroscopy (REELS) is used to measure the surface and bulk plasmon during hydrogen sorption in magnesium. The measurements show that the hydrogenation proceeds via the growth of magnesium hydride without the presence of chemisorbed hydrogen on the metallic magnesium surface exactly as indicated by the calculations. This is due to the low stability of sub-stoichiometric amounts of chemisorbed H correlating with the unfavorable charge state of Mg. They are merely bound to the unchanged adjacent Mg layers, thereby explaining the failure of classical hydrogenation catalysts, which effectively only hydrogenate Mg in their direct vicinity. The acceleration of hydrogen sorption kinetics in Mg must affect the polarization in the interface between Mg and MgH2 during hydrogenation.

8.
Inorg Chem ; 50(6): 2590-8, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21348444

RESUMEN

Dawsonite-type compounds, with the general formula MAlCO(3)(OH)(2), where M = Na(+), K(+), or NH(4)(+), recently have become attractive materials because of their potential interest in geochemical CO(2) sequestration, CO(2) capture in power plants, and heterogeneous catalysis. However, the number of studies assessing the properties of these materials is limited. In the present paper, we report a theoretical reevaluation of the structural and essential physicochemical properties of Na-, K-, and NH(4)-dawsonites as determined by density functional theory (DFT) investigations. The calculated structure of Na- and K-dawsonites is in good agreement with previous data, while for NH(4)AlCO(3)(OH)(2), the calculations suggest orientation disorder of the ammonium ions in the structure. The normal-mode analysis, electronic and bonding properties, and elastic properties are reported for the three analogue dawsonites. The calculated formation enthalpy is -1714, -1699, and -1655 kJ/mol for K-, Na-, and NH(4)-dawsonite, respectively. This study comprises a first step toward a better understanding of the diversity of dawsonite intrinsic properties, which is required to tune their practical applications.

9.
J Phys Chem C Nanomater Interfaces ; 125(45): 25339-25349, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34824662

RESUMEN

Titanium is an excellent getter material, catalyzes gas-solid reactions such as hydrogen absorption in lightweight metal hydrides and complex metal hydrides and has recently been shown as a potential ammonia synthesis catalyst. However, knowledge of the surface properties of this metal is limited when it absorbs large quantities of hydrogen at operation conditions. Both the conceptual description of such a surface as well as the experimental determination of surface hydrogen concentration on hydride-forming metals is challenging due to the dynamic bulk properties and the incompatibility of traditional surface science methods with the hydrogen pressure needed to form the metal hydride, respectively. In this paper, the surface pressure-composition isotherms of the titanium-hydrogen system are measured by operando reflecting electron energy loss spectroscopy (REELS). The titanium thin films were deposited on and hydrogenated through a palladium membrane, which provides an atomic hydrogen source under ultrahigh vacuum conditions. The measurements are supported by density functional theory calculations providing a complete picture of the hydrogen-deficient surface of TiH2 being the basis of its high catalytic activity.

10.
Science ; 368(6494)2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32467361

RESUMEN

Li et al commented that our report claims that methods reported thus far cannot enable the production of high-purity corundum with surface areas greater than 100 m2 g-1, and that our obtained material could be porous aggregates rather than nanoparticles. We disagree with both of these suggestions.

11.
Science ; 366(6464): 485-489, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31649198

RESUMEN

In its nanoparticulate form, corundum (α-Al2O3) could lead to several applications. However, its production into nanoparticles (NPs) is greatly hampered by the high activation energy barrier for its formation from cubic close-packed oxides and the sporadic nature of its nucleation. We report a simple synthesis of nanometer-sized α-Al2O3 (particle diameter ~13 nm, surface areas ~140 m2 g-1) by the mechanochemical dehydration of boehmite (γ-AlOOH) at room temperature. This transformation is accompanied by severe microstructural rearrangements and might involve the formation of rare mineral phases, diaspore and tohdite, as intermediates. Thermodynamic calculations indicate that this transformation is driven by the shift in stability from boehmite to α-Al2O3 caused by milling impacts on the surface energy. Structural water in boehmite plays a crucial role in generating and stabilizing α-Al2O3 NPs.

12.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 3): 406-413, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830662

RESUMEN

closo-Borates, such as Na2B12H12, are an emerging class of ionic conductors that show promising chemical, electrochemical and mechanical properties as electrolytes in all-solid-state batteries. Motivated by theoretical predictions, high-pressure in situ powder X-ray diffraction on Na2B12H12 was performed and two high-pressure phases are discovered. The first phase transition occurs at 0.5 GPa and it is persistent to ambient pressure, whereas the second transition takes place between 5.7 and 8.1 GPa and it is fully reversible. The mechanisms of the transitions by means of group theoretical analysis are unveiled. The primary-order parameters are identified and the stability at ambient pressure of the first polymorph is explained by density functional theory calculations. Finally, the parameters relevant to engineer and build an all-solid-state battery, namely, the bulk modulus and the coefficient of the thermal expansion are reported. The relatively low value of the bulk modulus for the first polymorph (14 GPa) indicates a soft material which allows accommodation of the volume change of the cathode during cycling.

13.
J Phys Condens Matter ; 20(46): 465210, 2008 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-21693850

RESUMEN

We report combined density functional studies and thermodynamic considerations on Ti-related and native defects in lithium borohydride and sodium alanate. Ti atoms introduced into the bulk of LiBH(4) are thermodynamically unfavorable for all their oxidation states, while high oxidation states of Ti(n+) cations may become thermodynamically stable in the bulk of NaAlH(4) at certain thermodynamic conditions. Neutral hydrogen vacancies and interstitials or cation vacancies are less stable than their charged counterparts in both compounds. In sodium alanate, the formation of native defects leads to changes of the coordination number of aluminum, while in lithium borohydride BH(4) groups change their mutual orientation but B-H bonds remain intact. The electronic band alignment in LiBH(4) and NaAlH(4) is different.

14.
Dalton Trans ; 47(16): 5843-5849, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29648562

RESUMEN

Nickel closo-dodecaborate NiB12H12 was prepared by mechanosynthesis (ball milling) of mixtures of Na2B12H12 + NiCl2 followed by hydration and drying under dynamic vacuum. The crystal structures of hydrated and anhydrous closo-dodecaborates were characterized by temperature dependent synchrotron radiation X-ray powder diffraction, ab initio calculations, thermal analysis and infrared spectroscopy. Three different water containing complexes were found: a homoleptic octahedral complex in Ni(H2O)6B12H12 crystallizing in two different deformation variants of a complex centred closo-dodecaborate cube, and a heteroleptic octahedral complex in Ni(H2O)4B12H12 containing four water molecules and two hydrogens and centring also a deformed closo-dodecaborate cube. Anhydrous nickel closo-dodecaborate was obtained by drying the hydrated sample under dynamic vacuum. It crystallizes with bcc packing of B12H122- anions and Ni2+ is disordered close to the triangular face of the tetrahedral interstice coordinated by a H5 square pyramid.

15.
J Phys Chem Lett ; 9(22): 6450-6455, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30354146

RESUMEN

Coordination complexes of magnesium borohydride show promising properties as solid electrolytes for magnesium ion batteries and warrant a thorough microscopic description of factors governing their mobility properties. Here, the dynamics of Mg(BH4)2-diglyme0.5 on the atomic level are investigated by means of quasielastic neutron scattering supported by density functional theory calculations and IR and NMR spectroscopy. Employing deuterium labeling, we can unambiguously separate all the hydrogen-containing electrolyte components, which facilitate Mg2+ transport, and provide a detailed analytical description of their motions on the picosecond time scale. The planar diglyme chain coordinating the central Mg atom appears to be flexible, while two dynamically different groups of [BH4]- anions undergo reorientations. The latter has important implications for the thermal stability and conductivity of Mg(BH4)2-diglyme0.5 and demonstrates that the presence of excess Mg(BH4)2 units in partially chelated Mg complexes may improve the overall performance of related solid-state electrolytes.

16.
ChemSusChem ; 10(23): 4725-4734, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-28981990

RESUMEN

Metal borohydrides are intensively researched as high-capacity hydrogen storage materials. Aluminum is a cheap, light, and abundant element and Al3+ can serve as a template for reversible dehydrogenation. However, Al(BH4 )3 , containing 16.9 wt % of hydrogen, has a low boiling point, is explosive on air and has poor storage stability. A new family of mixed-cation borohydrides M[Al(BH4 )4 ], which are all solid under ambient conditions, show diverse thermal decomposition behaviors: Al(BH4 )3 is released for M=Li+ or Na+ , whereas heavier derivatives evolve hydrogen and diborane. NH4 [Al(BH4 )4 ], containing both protic and hydridic hydrogen, has the lowest decomposition temperature of 35 °C and yields Al(BH4 )3 ⋅NHBH and hydrogen. The decomposition temperatures, correlated with the cations' ionic potential, show that M[Al(BH4 )4 ] species are in the most practical stability window. This family of solids, with convenient and versatile properties, puts aluminum borohydride chemistry in the mainstream of hydrogen storage research, for example, for the development of reactive hydride composites with increased hydrogen content.


Asunto(s)
Borohidruros/química , Hidrógeno/química , Aluminio/química , Transición de Fase , Temperatura
17.
ACS Appl Mater Interfaces ; 8(1): 152-60, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26652180

RESUMEN

Rare-earth oxides (REOs) possess a remarkable intrinsic hydrophobicity, making them candidates for a myriad of applications. Although the superhydrophobicity of REOs has been explored experimentally, the atomistic details of the structure at the oxide-water interface are still not well understood. In this work, we report a density functional theory study of the interaction between water and CeO2, Nd2O3, and α-Al2O3 to explain their different wettability. The wetting of the metal oxide surface is controlled by geometric and electronic factors. While the electronic term is related to the acid-base properties of the surface layer, the geometric factor depends on the matching between adsorption sites and oxygen atoms from the hexagonal water network. For all the metal oxides considered here, water dissociation is confined to the first oxide-water layer. Hydroxyl groups on α-Al2O3 are responsible for the strong oxide-water interaction, and thus, both Al- and hydroxyl-terminated wet. On CeO2, the intrinsic hydrophobicity of the clean surface disappears when lattice hydroxyl groups (created by the reaction of water with oxygen vacancies) are present as they dominate the interaction and drive wetting. Therefore, hydroxyls may convert a intrinsic nonwetting surface into a wetting one. Finally, we also report that surface modifications, like cation substitution, do not change the acid-base character of the surface, and thus they show the same nonwetting properties as native CeO2 or Nd2O3.

18.
Beilstein J Nanotechnol ; 6: 361-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25821675

RESUMEN

BACKGROUND: The majority of complex and advanced materials contain nanoparticles. The properties of these materials depend crucially on the size and shape of these nanoparticles. Wulff construction offers a simple method of predicting the equilibrium shape of nanoparticles given the surface energies of the material. RESULTS: We review the mathematical formulation and the main applications of Wulff construction during the last two decades. We then focus to three recent extensions: active sites of metal nanoparticles for heterogeneous catalysis, ligand-protected nanoparticles generated as colloidal suspensions and nanoparticles of complex metal hydrides for hydrogen storage. CONCLUSION: Wulff construction, in particular when linked to first-principles calculations, is a powerful tool for the analysis and prediction of the shapes of nanoparticles and tailor the properties of shape-inducing species.

19.
Dalton Trans ; 44(14): 6571-80, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25757998

RESUMEN

We have studied the reaction of MnCl2 with MBH4 (M = Li(+), Na(+), K(+)) in Et2O. Crystal structures of two new intermediates, named [{M(Et2O)2}Mn2(BH4)5] (M = Li(+), Na(+)), were elucidated by X-ray diffraction. Mn(BH4)2 in a mixture with LiBH4 or NaBH4 forms upon the solvent removal in a vacuum. [{M(Et2O)2}Mn2(BH4)5] contains 2D layers formed by Mn and BH4 groups, linked through the alkali metal atoms coordinated to Et2O. The loss of the solvent molecules leads to the segregation of the partially amorphous or nanocrystalline LiBH4/NaBH4 and a creation of the 3D framework of the crystalline Mn(BH4)2. While using LiBH4 led to Mn(BH4)2 contaminated with LiCl, presumably due to an efficient trapping of the latter salt by the [Mn(BH4)2-Et2O] system, the reaction with NaBH4 produced chlorine-free Mn(BH4)2 accompanied with NaBH4. Using KBH4 led to the formation of K2Mn(BH4)4 as a second phase. Two pyridine-containing solvomorphs, [Mn(py)3(BH4)2] and [Mn(py)4(BH4)2]·2py, were isolated in pure form. However, Mn(BH4)2 partly decomposes upon removal of pyridine molecules.

20.
Phys Rev Lett ; 99(20): 206402, 2007 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-18233166

RESUMEN

We report density functional studies of the (001) surface of magnetite that account for local Coulomb interactions. Iron cations in the surface layers exhibit charge and t2g orbital ordering that is coupled with the lattice strains. Orbital ordering is present for various surface stoichiometries and causes opening of the band gap Eg approximately 0.3 eV at the surface, such that the (001) surface of Fe3O4 remains insulating also in the high temperature cubic phase. The (radical 2 x radical 2)R45 degrees surface reconstruction is related to orbital ordering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA