RESUMEN
Cancer genomics has revealed many genes and core molecular processes that contribute to human malignancies, but the genetic and molecular bases of many rare cancers remains unclear. Genetic predisposition accounts for 5 to 10% of cancer diagnoses in children1,2, and genetic events that cooperate with known somatic driver events are poorly understood. Pathogenic germline variants in established cancer predisposition genes have been recently identified in 5% of patients with the malignant brain tumour medulloblastoma3. Here, by analysing all protein-coding genes, we identify and replicate rare germline loss-of-function variants across ELP1 in 14% of paediatric patients with the medulloblastoma subgroup Sonic Hedgehog (MBSHH). ELP1 was the most common medulloblastoma predisposition gene and increased the prevalence of genetic predisposition to 40% among paediatric patients with MBSHH. Parent-offspring and pedigree analyses identified two families with a history of paediatric medulloblastoma. ELP1-associated medulloblastomas were restricted to the molecular SHHα subtype4 and characterized by universal biallelic inactivation of ELP1 owing to somatic loss of chromosome arm 9q. Most ELP1-associated medulloblastomas also exhibited somatic alterations in PTCH1, which suggests that germline ELP1 loss-of-function variants predispose individuals to tumour development in combination with constitutive activation of SHH signalling. ELP1 is the largest subunit of the evolutionarily conserved Elongator complex, which catalyses translational elongation through tRNA modifications at the wobble (U34) position5,6. Tumours from patients with ELP1-associated MBSHH were characterized by a destabilized Elongator complex, loss of Elongator-dependent tRNA modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response, consistent with loss of protein homeostasis due to Elongator deficiency in model systems7-9. Thus, genetic predisposition to proteome instability may be a determinant in the pathogenesis of paediatric brain cancers. These results support investigation of the role of protein homeostasis in other cancer types and potential for therapeutic interference.
Asunto(s)
Neoplasias Cerebelosas/metabolismo , Mutación de Línea Germinal , Meduloblastoma/metabolismo , Factores de Elongación Transcripcional/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Niño , Femenino , Humanos , Masculino , Meduloblastoma/genética , Linaje , ARN de Transferencia/metabolismo , Factores de Elongación Transcripcional/genéticaRESUMEN
The BRCA2 tumor suppressor is a DNA double-strand break (DSB) repair factor essential for maintaining genome integrity. BRCA2-deficient cells spontaneously accumulate DNA-RNA hybrids, a known source of genome instability. However, the specific role of BRCA2 on these structures remains poorly understood. Here we identified the DEAD-box RNA helicase DDX5 as a BRCA2-interacting protein. DDX5 associates with DNA-RNA hybrids that form in the vicinity of DSBs, and this association is enhanced by BRCA2. Notably, BRCA2 stimulates the DNA-RNA hybrid-unwinding activity of DDX5 helicase. An impaired BRCA2-DDX5 interaction, as observed in cells expressing the breast cancer variant BRCA2-T207A, reduces the association of DDX5 with DNA-RNA hybrids, decreases the number of RPA foci, and alters the kinetics of appearance of RAD51 foci upon irradiation. Our findings are consistent with DNA-RNA hybrids constituting an impediment for the repair of DSBs by homologous recombination and reveal BRCA2 and DDX5 as active players in their removal.
Asunto(s)
Proteína BRCA2/metabolismo , ARN Helicasas DEAD-box/metabolismo , Reparación del ADN por Recombinación , Proteína BRCA2/genética , Línea Celular Tumoral , ARN Helicasas DEAD-box/genética , Roturas del ADN de Doble Cadena , Células HEK293 , Humanos , Ácidos Nucleicos Heterodúplex , Unión ProteicaRESUMEN
Polycomb Group (PcG) proteins maintain transcriptional repression throughout development, mostly by regulating chromatin structure. Polycomb Repressive Complex 2 (PRC2), a component of the Polycomb machinery, is responsible for the methylation of histone H3 lysine 27 (H3K27me2/3). Jarid2 was previously identified as a cofactor of PRC2, regulating PRC2 targeting to chromatin and its enzymatic activity. Deletion of Jarid2 leads to impaired orchestration of gene expression during cell lineage commitment. Here, we reveal an unexpected crosstalk between Jarid2 and PRC2, with Jarid2 being methylated by PRC2. This modification is recognized by the Eed core component of PRC2 and triggers an allosteric activation of PRC2's enzymatic activity. We show that Jarid2 methylation is important to promote PRC2 activity at a locus devoid of H3K27me3 and for the correct deposition of this mark during cell differentiation. Our results uncover a regulation loop where Jarid2 methylation fine-tunes PRC2 activity depending on the chromatin context.
Asunto(s)
Diferenciación Celular , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Células HEK293 , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Lisina/genética , Lisina/metabolismo , Metilación , Ratones Noqueados , Modelos Genéticos , Mutación , Complejo Represivo Polycomb 2/genética , Interferencia de ARNRESUMEN
Crossovers generated during the repair of programmed meiotic double-strand breaks must be tightly regulated to promote accurate homolog segregation without deleterious outcomes, such as aneuploidy. The Mlh1-Mlh3 (MutLγ) endonuclease complex is critical for crossover resolution, which involves mechanistically unclear interplay between MutLγ and Exo1 and polo kinase Cdc5. Using budding yeast to gain temporal and genetic traction on crossover regulation, we find that MutLγ constitutively interacts with Exo1. Upon commitment to crossover repair, MutLγ-Exo1 associate with recombination intermediates, followed by direct Cdc5 recruitment that triggers MutLγ crossover activity. We propose that Exo1 serves as a central coordinator in this molecular interplay, providing a defined order of interaction that prevents deleterious, premature activation of crossovers. MutLγ associates at a lower frequency near centromeres, indicating that spatial regulation across chromosomal regions reduces risky crossover events. Our data elucidate the temporal and spatial control surrounding a constitutive, potentially harmful, nuclease. We also reveal a critical, noncatalytic role for Exo1, through noncanonical interaction with polo kinase. These mechanisms regulating meiotic crossovers may be conserved across species.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Intercambio Genético , Exodesoxirribonucleasas/metabolismo , Meiosis/genética , Proteínas MutL/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/genética , Cromosomas Fúngicos , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Recombinación GenéticaRESUMEN
In multicellular organisms, Polycomb Repressive Complex2 (PRC2) is known to deposit tri-methylation of lysine 27 of histone H3 (H3K27me3) to establish and maintain gene silencing, critical for developmentally regulated processes. The PRC2 complex is absent in both widely studied model yeasts, which initially suggested that PRC2 arose with the emergence of multicellularity. However, its discovery in several unicellular species including microalgae questions its role in unicellular eukaryotes. Here, we use Phaeodactylum tricornutum enhancer of zeste E(z) knockouts and show that P. tricornutum E(z) is responsible for di- and tri-methylation of lysine 27 of histone H3. H3K27me3 depletion abolishes cell morphology in P. tricornutum providing evidence for its role in cell differentiation. Genome-wide profiling of H3K27me3 in fusiform and triradiate cells further revealed genes that may specify cell identity. These results suggest a role for PRC2 and its associated mark in cell differentiation in unicellular species, and highlight their ancestral function in a broader evolutionary context than currently is appreciated.
Asunto(s)
Histonas , Complejo Represivo Polycomb 2 , Diferenciación Celular/genética , Histonas/metabolismo , Metilación , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo PolycombRESUMEN
Although Merlin's function as a tumor suppressor and regulator of mitogenic signaling networks such as the Ras/rac, Akt, and Hippo pathways is well-documented, in mammals as well as in insects, its role during cell cycle progression remains unclear. In this study, using a combination of approaches, including FACS analysis, time-lapse imaging, immunofluorescence microscopy, and co-immunoprecipitation, we show that Ser-518 of Merlin is a substrate of the Aurora protein kinase A during mitosis and that its phosphorylation facilitates the phosphorylation of a newly discovered site, Thr-581. We found that the expression in HeLa cells of a Merlin variant that is phosphorylation-defective on both sites leads to a defect in centrosomes and mitotic spindles positioning during metaphase and delays the transition from metaphase to anaphase. We also show that the dual mitotic phosphorylation not only reduces Merlin binding to microtubules but also timely modulates ezrin interaction with the cytoskeleton. Finally, we identify several point mutants of Merlin associated with neurofibromatosis type 2 that display an aberrant phosphorylation profile along with defective α-tubulin-binding properties. Altogether, our findings of an Aurora A-mediated interaction of Merlin with α-tubulin and ezrin suggest a potential role for Merlin in cell cycle progression.
Asunto(s)
Aurora Quinasa A/metabolismo , Mitosis , Neurofibromina 2/metabolismo , Aurora Quinasa A/antagonistas & inhibidores , Benzazepinas/farmacología , Células HEK293 , Células HeLa , Humanos , Mitosis/efectos de los fármacos , Mutación , Neurofibromina 2/antagonistas & inhibidores , Neurofibromina 2/genética , Nocodazol/farmacología , Fosforilación/efectos de los fármacosRESUMEN
Oncogenic mutations leading to persistent kinase activities are associated with malignancies. Therefore, deciphering the signaling networks downstream of these oncogenic stimuli remains a challenge to gather insights into targeted therapy. To elucidate the biochemical networks connecting the Kit mutant to leukemogenesis, in the present study, we performed a global profiling of tyrosine-phosphorylated proteins from mutant Kit-driven murine leukemia proerythroblasts and identified Shp2 and Stat5 as proximal effectors of Kit. Shp2 or Stat5 gene depletion by sh-RNA, combined with pharmacologic inhibition of PI3kinase or Mek/Erk activities, revealed 2 distinct and independent signaling pathways contributing to malignancy. We demonstrate that cell survival is driven by the Kit/Shp2/Ras/Mek/Erk1/2 pathway, whereas the G(1)/S transition during the cell cycle is accelerated by both the Kit/Stat5 and Kit/PI3K/Akt pathways. The combined use of the clinically relevant drugs NVP-BEZ235, which targets the cell cycle, and Obatoclax, which targets survival, demonstrated synergistic effects to inhibit leukemia cell growth. This synergy was confirmed with a human mast leukemia cell line (HMC-1.2) that expresses mutant Kit. The results of the present study using liquid chromatography/tandem mass spectrometry analysis have elucidated signaling networks downstream of an oncogenic kinase, providing a molecular rationale for pathway-targeted therapy to treat cancer cells refractory to tyrosine kinase inhibitors.
Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Neoplasias/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-kit/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Adenilato Quinasa/antagonistas & inhibidores , Adenilato Quinasa/fisiología , Animales , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral/metabolismo , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Imidazoles/farmacología , Indoles , Leucemia de Mastocitos/patología , Ratones , Ratones Desnudos , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/fisiología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Fosfotirosina/análisis , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/fisiología , Pirroles/farmacología , Quinolinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Factor de Transcripción STAT5/antagonistas & inhibidores , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/fisiología , Ensayo de Tumor de Célula MadreRESUMEN
Abscission is the final stage of cytokinesis, which cleaves the intercellular bridge (ICB) connecting two daughter cells. Abscission requires tight control of the recruitment and polymerization of the Endosomal Protein Complex Required for Transport-III (ESCRT-III) components. We explore the role of post-translational modifications in regulating ESCRT dynamics. We discover that SMYD2 methylates the lysine 6 residue of human CHMP2B, a key ESCRT-III component, at the ICB, impacting the dynamic relocation of CHMP2B to sites of abscission. SMYD2 loss-of-function (genetically or pharmacologically) causes CHMP2B hypomethylation, delayed CHMP2B polymerization and delayed abscission. This is phenocopied by CHMP2B lysine 6 mutants that cannot be methylated. Conversely, SMYD2 gain-of-function causes CHMP2B hypermethylation and accelerated abscission, specifically in cells undergoing cytokinetic challenges, thereby bypassing the abscission checkpoint. Additional experiments highlight the importance of CHMP2B methylation beyond cytokinesis, namely during ESCRT-III-mediated HIV-1 budding. We propose that lysine methylation signaling fine-tunes the ESCRT-III machinery to regulate the timing of cytokinetic abscission and other ESCRT-III dependent functions.
Asunto(s)
Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte , N-Metiltransferasa de Histona-Lisina , Humanos , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , VIH-1/metabolismo , VIH-1/genética , VIH-1/fisiología , Lisina/metabolismo , Metilación , Procesamiento Proteico-PostraduccionalRESUMEN
The interaction of Plasmodium falciparum-infected red blood cells (iRBCs) with the vascular endothelium plays a crucial role in malaria pathology and disease. KAHRP is an exported P. falciparum protein involved in iRBC remodelling, which is essential for the formation of protrusions or "knobs" on the iRBC surface. These knobs and the proteins that are concentrated within them allow the parasites to escape the immune response and host spleen clearance by mediating cytoadherence of the iRBC to the endothelial wall, but this also slows down blood circulation, leading in some cases to severe cerebral and placental complications. In this work, we have applied genetic and biochemical tools to identify proteins that interact with P. falciparum KAHRP using enhanced ascorbate peroxidase 2 (APEX2) proximity-dependent biotinylation and label-free shotgun proteomics. A total of 30 potential KAHRP-interacting candidates were identified, based on the assigned fragmented biotinylated ions. Several identified proteins have been previously reported to be part of the Maurer's clefts and knobs, where KAHRP resides. This study may contribute to a broader understanding of P. falciparum protein trafficking and knob architecture and shows for the first time the feasibility of using APEX2-proximity labelling in iRBCs.
Asunto(s)
Eritrocitos , Plasmodium falciparum , Proteómica , Proteínas Protozoarias , Eritrocitos/parasitología , Eritrocitos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Humanos , Proteómica/métodos , Malaria Falciparum/parasitología , Malaria Falciparum/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Ascorbato Peroxidasas/metabolismo , Unión Proteica , Biotinilación , Endonucleasas , Péptidos , Proteínas , Enzimas MultifuncionalesRESUMEN
Normal cells coordinate proliferation and differentiation by precise tuning of gene expression based on the dynamic shifts of the epigenome throughout the developmental timeline. Although non-mutational epigenetic reprogramming is an emerging hallmark of cancer, the epigenomic shifts that occur during the transition from normal to malignant cells remain elusive. Here, we capture the epigenomic changes that occur during tumorigenesis in a prototypic embryonal brain tumor, medulloblastoma. By comparing the epigenomes of the different stages of transforming cells in mice, we identify nuclear factor I family of transcription factors, known to be cell fate determinants in development, as oncogenic regulators in the epigenomes of precancerous and cancerous cells. Furthermore, genetic and pharmacological inhibition of NFIB validated a crucial role of this transcription factor by disrupting the cancer epigenome in medulloblastoma. Thus, this study exemplifies how epigenomic changes contribute to tumorigenesis via non-mutational mechanisms involving developmental transcription factors.
Asunto(s)
Epigenoma , Meduloblastoma , Factores de Transcripción NFI , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/metabolismo , Animales , Factores de Transcripción NFI/metabolismo , Factores de Transcripción NFI/genética , Ratones , Humanos , Regulación Neoplásica de la Expresión Génica , Progresión de la Enfermedad , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Epigénesis Genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proliferación Celular/genética , Diferenciación Celular/genéticaRESUMEN
Dose-limiting toxicity poses a major limitation to the clinical utility of targeted cancer therapies, often arising from target engagement in nonmalignant tissues. This obstacle can be minimized by targeting cancer dependencies driven by proteins with tissue-restricted and/or tumor-restricted expression. In line with another recent report, we show here that, in acute myeloid leukemia (AML), suppression of the myeloid-restricted PIK3CG/p110γ-PIK3R5/p101 axis inhibits protein kinase B/Akt signaling and compromises AML cell fitness. Furthermore, silencing the genes encoding PIK3CG/p110γ or PIK3R5/p101 sensitizes AML cells to established AML therapies. Importantly, we find that existing small-molecule inhibitors against PIK3CG are insufficient to achieve a sustained long-term antileukemic effect. To address this concern, we developed a proteolysis-targeting chimera (PROTAC) heterobifunctional molecule that specifically degrades PIK3CG and potently suppresses AML progression alone and in combination with venetoclax in human AML cell lines, primary samples from patients with AML and syngeneic mouse models.
Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib , Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Humanos , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Proteolisis/efectos de los fármacos , Femenino , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéuticoRESUMEN
Apo-calmodulin, a small, mainly α, soluble protein is a calcium-dependent protein activator. It is made of two N- and C-terminal domains having a sequence homology of 70%, an identical folding but different stabilities, and is thus an interesting system for unfolding studies. The use of small angle neutron scattering (SANS) and other biophysical techniques has permitted to reveal conformational difference between native and thermal denatured states of apo-calmodulin. The results show that secondary and tertiary structures of apo-calmodulin evolve in a synchronous way, indicating the absence in the unfolding pathway of molten-globule state sufficiently stable to affect transition curves. From SANS experiments, at 85 °C, apo-calmodulin adopts a polymer chain conformation with some residual local structures. After cooling down, apo-calmodulin recovers a compact state, with a secondary structure close to the native one but with a higher radius of gyration and a different tyrosine environment. In fact on a timescale of few minutes, heat denaturation of apo-calmodulin is partially reversible, but on a time scale of hours (for SANS experiments), the long exposure to heat may lead to a non-reversibility due to some chemical perturbation of the protein. In fact, from Mass Spectrometry measurements, we got evidence of dehydration and deamidation of heated apo-calmodulin.
Asunto(s)
Calmodulina/química , Biofisica , Dicroismo Circular , Difracción de Neutrones , Conformación Proteica , Dispersión del Ángulo Pequeño , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , TermodinámicaRESUMEN
The regulation of translation in astrocytes, the main glial cells in the brain, remains poorly characterized. We developed a high-throughput proteomics screen for polysome-associated proteins in astrocytes and focused on ribosomal protein receptor of activated protein C kinase 1 (RACK1), a critical factor in translational regulation. In astrocyte somata and perisynaptic astrocytic processes (PAPs), RACK1 preferentially binds to a number of mRNAs, including Kcnj10, encoding the inward-rectifying potassium (K+) channel Kir4.1. By developing an astrocyte-specific, conditional RACK1 knockout mouse model, we show that RACK1 represses production of Kir4.1 in hippocampal astrocytes and PAPs. Upregulation of Kir4.1 in the absence of RACK1 increases astrocytic Kir4.1-mediated K+ currents and volume. It also modifies neuronal activity attenuating burst frequency and duration. Reporter-based assays reveal that RACK1 controls Kcnj10 translation through the transcript's 5' untranslated region. Hence, translational regulation by RACK1 in astrocytes represses Kir4.1 expression and influences neuronal activity.
Asunto(s)
Astrocitos , Neuroglía , Animales , Ratones , Astrocitos/metabolismo , Ratones Noqueados , Neuroglía/metabolismo , Neuronas , Receptores de Cinasa C Activada/metabolismo , RibosomasRESUMEN
Osteosarcoma is a rare bone cancer in adolescents and young adults with a dismal prognosis because of metastatic disease and chemoresistance. Despite multiple clinical trials, no improvement in outcome has occurred in decades. There is an urgent need to better understand resistant and metastatic disease and to generate in vivo models from relapsed tumors. We developed eight new patient-derived xenograft (PDX) subcutaneous and orthotopic/paratibial models derived from patients with recurrent osteosarcoma and compared the genetic and transcriptomic landscapes of the disease progression at diagnosis and relapse with the matching PDX. Whole exome sequencing showed that driver and copy-number alterations are conserved from diagnosis to relapse, with the emergence of somatic alterations of genes mostly involved in DNA repair, cell cycle checkpoints, and chromosome organization. All PDX patients conserve most of the genetic alterations identified at relapse. At the transcriptomic level, tumor cells maintain their ossification, chondrocytic, and trans-differentiation programs during progression and implantation in PDX models, as identified at the radiological and histological levels. A more complex phenotype, like the interaction with immune cells and osteoclasts or cancer testis antigen expression, seemed conserved and was hardly identifiable by histology. Despite NSG mouse immunodeficiency, four of the PDX models partially reconstructed the vascular and immune-microenvironment observed in patients, among which the macrophagic TREM2/TYROBP axis expression, recently linked to immunosuppression. Our multimodal analysis of osteosarcoma progression and PDX models is a valuable resource to understand resistance and metastatic spread mechanisms, as well as for the exploration of novel therapeutic strategies for advanced osteosarcoma.
RESUMEN
Oncogenesis often implicates epigenetic alterations, including derepression of transposable elements (TEs) and defects in alternative splicing. Here, we explore the possibility that noncanonical splice junctions between exons and TEs represent a source of tumor-specific antigens. We show that mouse normal tissues and tumor cell lines express wide but distinct ranges of mRNA junctions between exons and TEs, some of which are tumor specific. Immunopeptidome analyses in tumor cell lines identified peptides derived from exon-TE splicing junctions associated to MHC-I molecules. Exon-TE junction-derived peptides were immunogenic in tumor-bearing mice. Both prophylactic and therapeutic vaccinations with junction-derived peptides delayed tumor growth in vivo. Inactivation of the TE-silencing histone 3-lysine 9 methyltransferase Setdb1 caused overexpression of new immunogenic junctions in tumor cells. Our results identify exon-TE splicing junctions as epigenetically controlled, immunogenic, and protective tumor antigens in mice, opening possibilities for tumor targeting and vaccination in patients with cancer.
Asunto(s)
Antígenos de Neoplasias , Elementos Transponibles de ADN , Animales , Ratones , Elementos Transponibles de ADN/genética , Antígenos de Neoplasias/genética , Exones/genética , ARN Mensajero , Línea Celular TumoralRESUMEN
SF3B1 mutations are recurrent in cancer and result in aberrant splicing of a previously defined set of genes. Here, we investigated the fate of aberrant transcripts induced by mutant SF3B1 and the related functional consequences. We first demonstrate that mutant SF3B1 does not alter global nascent protein synthesis, suggesting target-dependent consequences. Polysome profiling revealed that 35% of aberrantly spliced transcripts are more translated than their corresponding canonically spliced transcripts. This mostly occurs in genes with enriched metabolic functions. Furthermore, LC-MS/MS analysis showed that mutant SF3B1 impacts the abundance of proteins involved in metabolism. Functional metabolic characterization revealed that mutant SF3B1 decreases mitochondrial respiration and promotes glycolysis to compensate for defective mitochondrial metabolism. Hence, mutant SF3B1 induces glycolysis dependency, which sensitizes cells to glycolysis inhibition. Overall, we provide evidence of the oncogenic involvement of mutant SF3B1 in uveal melanoma through a metabolic switch to glycolysis, revealing vulnerability to glycolysis inhibitors as a promising therapeutic strategy.
RESUMEN
Anatoxin-a and homoanatoxin-a are two potent cyanobacterial neurotoxins. We recently reported the identification of the gene cluster responsible for the biosynthesis of these toxins as well as the in-vitro reconstitution of the first steps of this biosynthesis. We now report experimental evidence supporting the proposed reaction mechanism of AnaB, a flavoprotein homologous to acyl-CoA dehydrogenase. AnaB catalyzes the two-electron oxidation of prolyl-AnaD, which is proline linked to the acyl carrier protein holo-AnaD, to dehydroprolyl-AnaD using oxygen as the second substrate. AnaB is thus an oxidase. By using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), we have identified and characterized dehydroprolyl-AnaD, the AnaB product. We estimated an apparent catalytic constant of 1 min(-1) for AnaB catalysis. We synthesized several deuterium-labeled prolines and enzymatically transformed them into their corresponding prolyl-AnaD. These deuterium-labeled prolyl-AnaDs were oxidized in the presence of AnaB, and the deuterium labeling in the remaining substrate and in the product was determined by LC-MS/MS. The data supported a reaction mechanism starting with a rapid enolization followed by a slow oxidation to give the conjugated imine, which in turn was isomerized to pyrroline-5-carboxyl-AnaD. We also showed that cis- and trans-4-fluoro-L-prolyl-AnaD and 3,4-dehydro-L-prolyl-AnaD were transformed into pyrrole-2-carboxyl-AnaD by AnaB. Thus, the 4-fluoro-analogues experienced a ß-elimination supporting the AnaB-catalyzed aza-allylic isomerization. We identified by sequence alignment the AnaB active site base, Glu244. We produced, purified, and characterized the E244A AnaB mutant, which is inactive, supporting the catalytic role of E244 as a base.
Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Toxinas Bacterianas/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Prolina/metabolismo , Tropanos/metabolismo , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Catálisis , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Cianobacterias , Toxinas de Cianobacterias , Mutagénesis Sitio-Dirigida , Mutación/genética , Oxidación-Reducción , Prolina/química , Prolina/genética , Espectrometría de Masas en Tándem , Tropanos/químicaRESUMEN
Epigenetic inheritance of gene expression states enables a single genome to maintain distinct cellular identities. How histone modifications contribute to this process remains unclear. Using global chromatin perturbations and local, time-controlled modulation of transcription, we establish the existence of epigenetic memory of transcriptional activation for genes that can be silenced by the Polycomb group. This property emerges during cell differentiation and allows genes to be stably switched after a transient transcriptional stimulus. This transcriptional memory state at Polycomb targets operates in cis; however, rather than relying solely on read-and-write propagation of histone modifications, the memory is also linked to the strength of activating inputs opposing Polycomb proteins, and therefore varies with the cellular context. Our data and computational simulations suggest a model whereby transcriptional memory arises from double-negative feedback between Polycomb-mediated silencing and active transcription. Transcriptional memory at Polycomb targets thus depends not only on histone modifications but also on the gene-regulatory network and underlying identity of a cell.
Asunto(s)
Epigénesis Genética , Mamíferos/genética , Proteínas del Grupo Polycomb/genética , Activación Transcripcional , Animales , Femenino , Código de Histonas , Humanos , Masculino , Ratones , Complejo Represivo Polycomb 2/genéticaRESUMEN
BACKGROUND: Brown algae evolved complex multicellularity independently of the animal and land plant lineages and are the third most developmentally complex phylogenetic group on the planet. An understanding of developmental processes in this group is expected to provide important insights into the evolutionary events necessary for the emergence of complex multicellularity. Here, we focus on mechanisms of epigenetic regulation involving post-translational modifications of histone proteins. RESULTS: A total of 47 histone post-translational modifications are identified, including a novel mark H2AZR38me1, but Ectocarpus lacks both H3K27me3 and the major polycomb complexes. ChIP-seq identifies modifications associated with transcription start sites and gene bodies of active genes and with transposons. H3K79me2 exhibits an unusual pattern, often marking large genomic regions spanning several genes. Transcription start sites of closely spaced, divergently transcribed gene pairs share a common nucleosome-depleted region and exhibit shared histone modification peaks. Overall, patterns of histone modifications are stable through the life cycle. Analysis of histone modifications at generation-biased genes identifies a correlation between the presence of specific chromatin marks and the level of gene expression. CONCLUSIONS: The overview of histone post-translational modifications in the brown alga presented here will provide a foundation for future studies aimed at understanding the role of chromatin modifications in the regulation of brown algal genomes.
Asunto(s)
Código de Histonas , Histonas , Estadios del Ciclo de Vida , Phaeophyceae/genética , Procesamiento Proteico-Postraduccional , Cromatina/metabolismo , Epigénesis Genética , Genoma , Células Germinativas de las Plantas , Phaeophyceae/fisiología , Filogenia , Plantas/genéticaRESUMEN
Glycoproteins and glycolipids at the plasma membrane contribute to a range of functions from growth factor signaling to cell adhesion and migration. Glycoconjugates undergo endocytic trafficking. According to the glycolipid-lectin (GL-Lect) hypothesis, the construction of tubular endocytic pits is driven in a glycosphingolipid-dependent manner by sugar-binding proteins of the galectin family. Here, we provide evidence for a function of the GL-Lect mechanism in transcytosis across enterocytes in the mouse intestine. We show that galectin-3 (Gal3) and its newly identified binding partner lactotransferrin are transported in a glycosphingolipid-dependent manner from the apical to the basolateral membrane. Transcytosis of lactotransferrin is perturbed in Gal3 knockout mice and can be rescued by exogenous Gal3. Inside enterocytes, Gal3 is localized to hallmark structures of the GL-Lect mechanism, termed clathrin-independent carriers. These data pioneer the existence of GL-Lect endocytosis in vivo and strongly suggest that polarized trafficking across the intestinal barrier relies on this mechanism.