RESUMEN
Lidar C O 2 sensing can be performed by 1572 nm pulsed laser sources. This work presents the development of a fiber amplifier at this wavelength emitting 1 µs FWHM Gaussian pulses at a repetition rate of 7.5 kHz. We obtain the mitigation of stimulated Brillouin scattering (SBS) by shaping the seed laser spectrum into a frequency comb with sinusoidal phase modulation. This frequency comb is compatible with a coherent dual-comb spectroscopy (DCS) method for a targeted lidar C O 2 sensing application. The effect of the harmonics spacing and relative intensity on the SBS threshold is studied. Laser pulses are amplified up to 182 µJ (182 W peak power) from a single-mode erbium (Er) and ytterbium (Yb) co-doped fiber. Those results hold promise for seeding large mode area Er-Yb co-doped fiber power amplifiers.
RESUMEN
We report on what is, to our knowledge, one of the first realizations of a CBC (coherent beam combining)-based laser emitter carrying a 10.66 Gb/s telecom signal in free-space optics, within the laboratory environment. Two telecom modulations have been tested: NRZ (non-return-to-zero, in amplitude) and DPSK (differential phase-shift keying, in phase). The modulated signal is split and amplified in three fiber amplifiers, delivering up to 3 W each. CBC of data amplified signals is achieved with residual phase errors well below < λ/60 RMS, using a phase-tagging technique (LOCSET). A first analysis of the influence of various parameters (such as phase-tagging modulation depth, optical path difference, number of channels, amplifier power) on the locking and data transmission quality is investigated. The study shows that the phase-tagging modulation depth and optical path difference are the main critical issues when carrying data on a CBC signal.
RESUMEN
A laser testbed based on active coherent beam combination (CBC) of seven 1.5 µm, 3 W fiber amplifiers was developed for applications requiring high power such as power density deposition on targets or free space laser communication. For the first time to our knowledge, the frequency-tagging locking of optical coherence by single-detector electronic-frequency tagging technique was implemented in the field in real atmospheric turbulence conditions in a target-in-the-loop configuration. Successful combination was achieved after horizontal propagation of 311 m and 1 km, at 1.5 m above the ground, while the estimated average turbulence strength was Cn2â¼4.10-14m-2/3. We present the CBC laser bench and an embedded near-field interferometer called PISTIL (PISton and TILt) able to measure the relative phase shift of each emitter. We show that this measurement can provide information on relative turbulence-induced phase variation of the combined laser beams. In particular, the far-field beam envelope wandering can be estimated through this diagnosis. Results are supported by an analytical model and confirmed by numerical post-analysis of measured far-field interference. This additional interferometer may improve CBC beam pointing through turbulence.
RESUMEN
We report what is, to the best of our knowledge, the first experimental demonstration of coherent combining of two mid-infrared difference frequency generators by active phase control in the continuous-wave regime. Using the phase relation that is inherent to the nonlinear process, we are able to phase lock and combine the idler waves by the sole phase control of one of the pump waves. This control is done by an all-fiber electro-optic modulator. Combining is achieved with an excellent efficiency with a residual phase error of λ/28.
RESUMEN
New architectures for telescopes or powerful lasers require segmented wave front metrology. This paper deals with a new interferometric wave front sensing technique called PISTIL (PISton and TILt), able to recover both piston and tilts of segment beams. The main advantages of the PISTIL technique are the absence of a reference arm and an access to the tilt information. An explanation of the principle, as well as an experimental implementation and the use of a segmented active mirror, are presented. Measurement errors of λ/200 for piston and 40 µrad for tilts have been achieved, well beyond performances requested for the above mentioned applications.
RESUMEN
In the framework of space-borne CO2 lidar development, the transmitter is a critical unit. We report on the development and the assessment of performances of a 2-µm single-frequency thulium fiber laser pumped Q-switched Ho:YLF laser. To fulfill the requirements of space-based operation, a master oscillator power amplifier architecture has been chosen, and the oscillator works in double-pulse operation. The transmitter can generate a single-mode dual wavelength emission "ON" and "OFF" around the R30e line of the 20013â00001 band of CO212. It delivers a pair of OFF-ON pulses with 12 mJ and 42 mJ energy, respectively, at a pulse repetition frequency of 303.5 Hz. The pulse energy and central frequency stabilities are especially documented as well as pulse duration, polarization, overall efficiency, beam quality, pointing stability, and spectral purity. The possible limitations by light-induced damage or radiation-induced attenuation on the laser performances are also evaluated.
RESUMEN
Coherent beam combining by active phase control could be useful for power scaling fiber-laser-pumped optical frequency converters. However, a fast phase modulator operating at the frequency-converted wavelength, a non-standard component, would be necessary. Fortunately, nonlinear conversion processes rely on a phase-matching condition allowing for indirect phase control using standard phase modulators. In this Letter, coherent combining of second-harmonic generators is demonstrated in both birefringent and quasi-phase-matching schemes in CW regime. Phase control operates at the fundamental wavelength, using all-fiber electro-optic modulators. An excellent beam combination is achieved with a residual phase error of λ/30 on the second-harmonic wave.
RESUMEN
Atmospheric gravity waves and turbulence generate small-scale fluctuations of wind, pressure, density, and temperature in the atmosphere. These fluctuations represent a real hazard for commercial aircraft and are known by the generic name of clear-air turbulence (CAT). Numerical weather prediction models do not resolve CAT and therefore provide only a probability of occurrence. A ground-based Rayleigh lidar was designed and implemented to remotely detect and characterize the atmospheric variability induced by turbulence in vertical scales between 40 m and a few hundred meters. Field measurements were performed at Observatoire de Haute-Provence (OHP, France) on 8 December 2008 and 23 June 2009. The estimate of the mean squared amplitude of bidimensional fluctuations of lidar signal showed excess compared to the estimated contribution of the instrumental noise. This excess can be attributed to atmospheric turbulence with a 95% confidence level. During the first night, data from collocated stratosphere-troposphere (ST) radar were available. Altitudes of the turbulent layers detected by the lidar were roughly consistent with those of layers with enhanced radar echo. The derived values of turbulence parameters Cn2 or CT2 were in the range of those published in the literature using ST radar data. However, the detection was at the limit of the instrumental noise and additional measurement campaigns are highly desirable to confirm these initial results. This is to our knowledge the first successful attempt to detect CAT in the free troposphere using an incoherent Rayleigh lidar system. The built lidar device may serve as a test bed for the definition of embarked CAT detection lidar systems aboard airliners.
RESUMEN
Active coherent beam combination using a 7-non-coupled core, polarization maintaining, air-clad, Yb-doped fiber is demonstrated as a monolithic and compact power-scaling concept for ultrafast fiber lasers. A microlens array matched to the multicore fiber and an active phase controller composed of a spatial light modulator applying a stochastic parallel gradient descent algorithm are utilized to perform coherent combining in the tiled aperture geometry. The mitigation of nonlinear effects at a pulse energy of 8.9 µJ and duration of 860 fs is experimentally verified at a repetition rate of 100 kHz. The experimental combining efficiency results in a far field central lobe carrying 49% of the total power, compared to an ideal value of 76%. This efficiency is primarily limited by group delay differences between cores which is identified as the main drawback of the system. Minimizing these group delay issues, e.g. by using short and straight rod-type multicore fibers, should allow a practical power scaling solution for femtosecond fiber systems.
RESUMEN
We report a high power, single frequency, linearly polarized master oscillator power amplifier emitting 110 ns, 1 kW peak power pulses at 2050 nm. A 20% slope efficiency and a beam quality of M2=1.21 are achieved with three-stage double-clad Tm(3+)-doped fiber architecture. Various pump schemes are compared leading to the conclusion that 793 nm pump wavelength is the most efficient for amplification at 2050 nm. Based on numerical simulations, the Brillouin gain coefficient around 2 µm in Tm(3+) highly doped silica fiber is estimated to 1.2×10(-11) m/W. Output peak power is limited by stimulated Brillouin scattering to 535 W without mitigation and to 1 kW with application of a strain distribution along the doped fiber.
RESUMEN
We demonstrate spectral coherent beam combining of two femtosecond fiber chirped-pulse amplifiers seeded by a common oscillator. Using active phase stabilization based on an electro-optic phase modulator, an average power of 10 W before compression and a high gain factor of 30 dB are obtained. At this gain value, 130 fs pulses with a spectral width of 19 nm can be generated, highlighting the strong potential of pulse synthesis for the reduction of the minimum duration of ultrashort pulses in fiber chirped-pulse amplifiers.
RESUMEN
The spatially resolved spectral (S2) imaging method is applied on an active microstructured fiber, with a multi-filament core (MFC). This type of fiber has been designed to be the last amplifying stage of a source for a long range coherent lidar. Studying the influence of the bending radius on the modal content with or without gain, we demonstrate that an upper-bound of the high-order modes content can be found by performing the S2 imaging on the bleached fiber. S2 imaging is then used to verify that the output beam of the MFC fiber can be made effectively single-mode. We also show that it can be simply adapted for measuring the fiber birefringence. Finally, a comparison of the MFC fiber mode area with that of a standard large mode area Erbium doped step index fiber illustrates the interest of the MFC structure for high power amplifiers.
Asunto(s)
Amplificadores Electrónicos , Análisis de Falla de Equipo/instrumentación , Análisis de Falla de Equipo/métodos , Rayos Láser , Fibras Ópticas , Análisis Espectral/instrumentación , Diseño de EquipoRESUMEN
Multifilament core (MFC) fibers are a new type of microstructured fiber recently introduced. We investigate their properties using finite element modeling and show that the equivalent step index fiber based on moments theory does not provide similar properties. We propose an effective index theory based on the fundamental space filling mode which allows to predict the MFC properties using a semi-analytical modeling. Good resistance to bending is thus attributed to increased core effective index due to the high index filaments.