Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 20(1): 75, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30669970

RESUMEN

BACKGROUND: Alternative polyadenylation (APA) has emerged as a pervasive mechanism that contributes to the transcriptome complexity and dynamics of gene regulation. The current tsunami of whole genome poly(A) site data from various conditions generated by 3' end sequencing provides a valuable data source for the study of APA-related gene expression. Cluster analysis is a powerful technique for investigating the association structure among genes, however, conventional gene clustering methods are not suitable for APA-related data as they fail to consider the information of poly(A) sites (e.g., location, abundance, number, etc.) within each gene or measure the association among poly(A) sites between two genes. RESULTS: Here we proposed a computational framework, named PASCCA, for clustering genes from replicated or unreplicated poly(A) site data using canonical correlation analysis (CCA). PASCCA incorporates multiple layers of gene expression data from both the poly(A) site level and gene level and takes into account the number of replicates and the variability within each experimental group. Moreover, PASCCA characterizes poly(A) sites in various ways including the abundance and relative usage, which can exploit the advantages of 3' end deep sequencing in quantifying APA sites. Using both real and synthetic poly(A) site data sets, the cluster analysis demonstrates that PASCCA outperforms other widely-used distance measures under five performance metrics including connectivity, the Dunn index, average distance, average distance between means, and the biological homogeneity index. We also used PASCCA to infer APA-specific gene modules from recently published poly(A) site data of rice and discovered some distinct functional gene modules. We have made PASCCA an easy-to-use R package for APA-related gene expression analyses, including the characterization of poly(A) sites, quantification of association between genes, and clustering of genes. CONCLUSIONS: By providing a better treatment of the noise inherent in repeated measurements and taking into account multiple layers of poly(A) site data, PASCCA could be a general tool for clustering and analyzing APA-specific gene expression data. PASCCA could be used to elucidate the dynamic interplay of genes and their APA sites among various biological conditions from emerging 3' end sequencing data to address the complex biological phenomenon.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Poliadenilación , Programas Informáticos , Análisis por Conglomerados , Biología Computacional/métodos , Correlación de Datos , Expresión Génica , Oryza/genética
2.
BMC Genomics ; 20(1): 347, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068142

RESUMEN

BACKGROUND: Single-cell RNA-sequencing (scRNA-seq) is fast becoming a powerful tool for profiling genome-scale transcriptomes of individual cells and capturing transcriptome-wide cell-to-cell variability. However, scRNA-seq technologies suffer from high levels of technical noise and variability, hindering reliable quantification of lowly and moderately expressed genes. Since most downstream analyses on scRNA-seq, such as cell type clustering and differential expression analysis, rely on the gene-cell expression matrix, preprocessing of scRNA-seq data is a critical preliminary step in the analysis of scRNA-seq data. RESULTS: We presented scNPF, an integrative scRNA-seq preprocessing framework assisted by network propagation and network fusion, for recovering gene expression loss, correcting gene expression measurements, and learning similarities between cells. scNPF leverages the context-specific topology inherent in the given data and the priori knowledge derived from publicly available molecular gene-gene interaction networks to augment gene-gene relationships in a data driven manner. We have demonstrated the great potential of scNPF in scRNA-seq preprocessing for accurately recovering gene expression values and learning cell similarity networks. Comprehensive evaluation of scNPF across a wide spectrum of scRNA-seq data sets showed that scNPF achieved comparable or higher performance than the competing approaches according to various metrics of internal validation and clustering accuracy. We have made scNPF an easy-to-use R package, which can be used as a versatile preprocessing plug-in for most existing scRNA-seq analysis pipelines or tools. CONCLUSIONS: scNPF is a universal tool for preprocessing of scRNA-seq data, which jointly incorporates the global topology of priori interaction networks and the context-specific information encapsulated in the scRNA-seq data to capture both shared and complementary knowledge from diverse data sources. scNPF could be used to recover gene signatures and learn cell-to-cell similarities from emerging scRNA-seq data to facilitate downstream analyses such as dimension reduction, cell type clustering, and visualization.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos , Transcriptoma , Algoritmos , Perfilación de la Expresión Génica , Humanos
3.
Bioinformatics ; 34(11): 1841-1849, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29360928

RESUMEN

Motivation: Alternative polyadenylation (APA) has been increasingly recognized as a crucial mechanism that contributes to transcriptome diversity and gene expression regulation. As RNA-seq has become a routine protocol for transcriptome analysis, it is of great interest to leverage such unprecedented collection of RNA-seq data by new computational methods to extract and quantify APA dynamics in these transcriptomes. However, research progress in this area has been relatively limited. Conventional methods rely on either transcript assembly to determine transcript 3' ends or annotated poly(A) sites. Moreover, they can neither identify more than two poly(A) sites in a gene nor detect dynamic APA site usage considering more than two poly(A) sites. Results: We developed an approach called APAtrap based on the mean squared error model to identify and quantify APA sites from RNA-seq data. APAtrap is capable of identifying novel 3' UTRs and 3' UTR extensions, which contributes to locating potential poly(A) sites in previously overlooked regions and improving genome annotations. APAtrap also aims to tally all potential poly(A) sites and detect genes with differential APA site usages between conditions. Extensive comparisons of APAtrap with two other latest methods, ChangePoint and DaPars, using various RNA-seq datasets from simulation studies, human and Arabidopsis demonstrate the efficacy and flexibility of APAtrap for any organisms with an annotated genome. Availability and implementation: Freely available for download at https://apatrap.sourceforge.io. Contact: liqq@xmu.edu.cn or xhuister@xmu.edu.cn. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Poliadenilación , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Transcriptoma , Arabidopsis/genética , Humanos , Poli A/metabolismo
4.
J Bioinform Comput Biol ; 15(5): 1750018, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28874086

RESUMEN

Alternative polyadenylation (APA) is a pervasive mechanism that contributes to gene regulation. Increasing sequenced poly(A) sites are placing new demands for the development of computational methods to investigate APA regulation. Cluster analysis is important to identify groups of co-expressed genes. However, clustering of poly(A) sites has not been extensively studied in APA, where most APA studies failed to consider the distribution, abundance, and variation of APA sites in each gene. Here we constructed a two-layer model based on canonical correlation analysis (CCA) to explore the underlying biological mechanisms in APA regulation. The first layer quantifies the general correlation of APA sites across various conditions between each gene and the second layer identifies genes with statistically significant correlation on their APA patterns to infer APA-specific gene clusters. Using hierarchical clustering, we comprehensively compared our method with four other widely used distance measures based on three performance indexes. Results showed that our method significantly enhanced the clustering performance for both synthetic and real poly(A) site data and could generate clusters with more biological meaning. We have implemented the CCA-based method as a publically available R package called PAcluster, which provides an efficient solution to the clustering of large APA-specific biological dataset.


Asunto(s)
Análisis por Conglomerados , Regulación de la Expresión Génica , Oryza/genética , Poliadenilación , Programas Informáticos , Empalme Alternativo , Familia de Multigenes , Análisis Multivariante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA