Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Genet ; 61(4): 332-339, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989569

RESUMEN

INTRODUCTION: NPC1 mutations are responsible for Niemann-Pick disease type C (NPC), a rare autosomal recessive neurodegenerative disease. Patients harbouring heterozygous NPC1 mutations may rarely show parkinsonism or dementia. Here, we describe for the first time a large family with an apparently autosomal dominant late-onset Alzheimer's disease (AD) harbouring a novel heterozygous NPC1 mutation. METHODS: All the five living siblings belonging to the family were evaluated. We performed clinical evaluation, neuropsychological tests, assessment of cerebrospinal fluid markers of amyloid deposition, tau pathology and neurodegeneration (ATN), structural neuroimaging and brain amyloid-positron emission tomography. Oxysterol serum levels were also tested. A wide next-generation sequencing panel of genes associated with neurodegenerative diseases and a whole exome sequencing analysis were performed. RESULTS: We detected the novel heterozygous c.3034G>T (p.Gly1012Cys) mutation in NPC1, shared by all the siblings. No other point mutations or deletions in NPC1 or NPC2 were found. In four siblings, a diagnosis of late-onset AD was defined according to clinical characterisation and ATN biomarkers (A+, T+, N+) and serum oxysterol analysis showed increased 7-ketocholesterol and cholestane-3ß,5α,6ß-triol. DISCUSSION: We describe a novel NPC1 heterozygous mutation harboured by different members of a family with autosomal dominant late-onset amnesic AD without NPC-associated features. A missense mutation in homozygous state in the same aminoacidic position has been previously reported in a patient with NPC with severe phenotype. The alteration of serum oxysterols in our family corroborates the pathogenic role of our NPC1 mutation. Our work, illustrating clinical and biochemical disease hallmarks associated with NPC1 heterozygosity in patients affected by AD, provides relevant insights into the pathogenetic mechanisms underlying this possible novel association.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Niemann-Pick Tipo C , Oxiesteroles , Humanos , Enfermedad de Alzheimer/genética , Mutación , Enfermedad de Niemann-Pick Tipo C/diagnóstico , Enfermedad de Niemann-Pick Tipo C/genética , Proteína Niemann-Pick C1/genética
2.
Hum Mol Genet ; 31(17): 2934-2950, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35405010

RESUMEN

DROSHA encodes a ribonuclease that is a subunit of the Microprocessor complex and is involved in the first step of microRNA (miRNA) biogenesis. To date, DROSHA has not yet been associated with a Mendelian disease. Here, we describe two individuals with profound intellectual disability, epilepsy, white matter atrophy, microcephaly and dysmorphic features, who carry damaging de novo heterozygous variants in DROSHA. DROSHA is constrained for missense variants and moderately intolerant to loss-of-function (o/e = 0.24). The loss of the fruit fly ortholog drosha causes developmental arrest and death in third instar larvae, a severe reduction in brain size and loss of imaginal discs in the larva. Loss of drosha in eye clones causes small and rough eyes in adult flies. One of the identified DROSHA variants (p.Asp1219Gly) behaves as a strong loss-of-function allele in flies, while another variant (p.Arg1342Trp) is less damaging in our assays. In worms, a knock-in that mimics the p.Asp1219Gly variant at a worm equivalent residue causes loss of miRNA expression and heterochronicity, a phenotype characteristic of the loss of miRNA. Together, our data show that the DROSHA variants found in the individuals presented here are damaging based on functional studies in model organisms and likely underlie the severe phenotype involving the nervous system.


Asunto(s)
Epilepsia , Discapacidad Intelectual , MicroARNs , Microcefalia , Malformaciones del Sistema Nervioso , Humanos , Discapacidad Intelectual/genética , MicroARNs/genética , MicroARNs/metabolismo , Microcefalia/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
3.
Hum Mol Genet ; 31(24): 4131-4142, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-35861666

RESUMEN

KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Enanismo , Discapacidad Intelectual , Anomalías Dentarias , Embarazo , Femenino , Humanos , Facies , Anomalías Dentarias/genética , Enfermedades del Desarrollo Óseo/genética , Anomalías Múltiples/genética , Anomalías Múltiples/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Hibridación Genómica Comparativa , Proteínas Represoras/genética , Fenotipo , Enanismo/genética , Pueblo Europeo
4.
Epilepsia ; 65(4): 1029-1045, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135915

RESUMEN

OBJECTIVE: The postsynaptic density protein of excitatory neurons PSD-95 is encoded by discs large MAGUK scaffold protein 4 (DLG4), de novo pathogenic variants of which lead to DLG4-related synaptopathy. The major clinical features are developmental delay, intellectual disability (ID), hypotonia, sleep disturbances, movement disorders, and epilepsy. Even though epilepsy is present in 50% of the individuals, it has not been investigated in detail. We describe here the phenotypic spectrum of epilepsy and associated comorbidities in patients with DLG4-related synaptopathy. METHODS: We included 35 individuals with a DLG4 variant and epilepsy as part of a multicenter study. The DLG4 variants were detected by the referring laboratories. The degree of ID, hypotonia, developmental delay, and motor disturbances were evaluated by the referring clinician. Data on awake and sleep electroencephalography (EEG) and/or video-polygraphy and brain magnetic resonance imaging were collected. Antiseizure medication response was retrospectively assessed by the referring clinician. RESULTS: A large variety of seizure types was reported, although focal seizures were the most common. Encephalopathy related to status epilepticus during slow-wave sleep (ESES)/developmental epileptic encephalopathy with spike-wave activation during sleep (DEE-SWAS) was diagnosed in >25% of the individuals. All but one individual presented with neurodevelopmental delay. Regression in verbal and/or motor domains was observed in all individuals who suffered from ESES/DEE-SWAS, as well as some who did not. We could not identify a clear genotype-phenotype relationship even between individuals with the same DLG4 variants. SIGNIFICANCE: Our study shows that a subgroup of individuals with DLG4-related synaptopathy have DEE, and approximately one fourth of them have ESES/DEE-SWAS. Our study confirms DEE as part of the DLG4-related phenotypic spectrum. Occurrence of ESES/DEE-SWAS in DLG4-related synaptopathy requires proper investigation with sleep EEG.


Asunto(s)
Encefalopatías , Epilepsia Generalizada , Epilepsia , Discapacidad Intelectual , Humanos , Estudios Retrospectivos , Hipotonía Muscular , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Epilepsia/complicaciones , Encefalopatías/genética , Convulsiones/complicaciones , Epilepsia Generalizada/complicaciones , Electroencefalografía/métodos , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Homólogo 4 de la Proteína Discs Large/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-38459409

RESUMEN

Since 2008, FOXG1 haploinsufficiency has been linked to a severe neurodevelopmental phenotype resembling Rett syndrome but with earlier onset. Most patients are unable to sit, walk, or speak. For years, FOXG1 sequencing was only prescribed in such severe cases, limiting insight into the full clinical spectrum associated with this gene. Next-generation sequencing (NGS) now enables unbiased diagnostics. Through the European Reference Network for Rare Malformation Syndromes, Intellectual and Other Neurodevelopmental Disorders, we gathered data from patients with heterozygous FOXG1 variants presenting a mild phenotype, defined as able to speak and walk independently. We also reviewed data from three previously reported patients meeting our criteria. We identified five new patients with pathogenic FOXG1 missense variants, primarily in the forkhead domain, showing varying nonspecific intellectual disability and developmental delay. These features are not typical of congenital Rett syndrome and were rarely associated with microcephaly and epilepsy. Our findings are consistent with a previous genotype-phenotype analysis by Mitter et al. suggesting the delineation of five different FOXG1 genotype groups. Milder phenotypes were associated with missense variants in the forkhead domain. This information may facilitate prognostic assessments in children carrying a FOXG1 variant and improve the interpretation of new variants identified with genomic sequencing.

6.
Neuropediatrics ; 54(6): 407-411, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37549685

RESUMEN

Childhood apraxia of speech (CAS) is a pediatric motor speech disorder. The genetic etiology of this complex neurological condition is not yet well understood, although some genes have been linked to it. We describe the case of a boy with a severe and persistent motor speech disorder, consistent with CAS, and a coexisting language impairment.Whole exome sequencing in our case revealed a de novo and splicing mutation in the CSMD1 gene.


Asunto(s)
Apraxias , Habla , Masculino , Niño , Humanos , Apraxias/genética , Trastornos del Habla/genética , Mutación/genética , Secuenciación del Exoma , Proteínas de la Membrana/genética , Proteínas Supresoras de Tumor/genética
7.
Neurol Sci ; 44(4): 1415-1418, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36648562

RESUMEN

INTRODUCTION: NAGLU encodes N-acetyl-alpha-glucosaminidase, an enzyme that degrades heparan sulfate. Biallelic NAGLU mutations cause mucopolysaccharidosis IIIB, a severe childhood-onset neurodegenerative disease, while monoallelic mutations are associated to late-onset, dominantly inherited painful sensory neuropathy. However, to date, only one family with a dominant NAGLU-related neuropathy has been described. CASE REPORT: Here we describe a patient with early-onset motor polyneuropathy harboring a novel monoallelic NAGLU mutation. We found reduced NAGLU enzymatic activity thus corroborating the pathogenic role of the new variant. DISCUSSION: Our report represents the second ever described case with dominant NAGLU-related neuropathy and the first case with early-onset motor symptoms. We underlie the importance of a thorough clinical description of this probably underestimated new clinical entity.


Asunto(s)
Neuropatías Hereditarias Sensoriales y Autónomas , Mucopolisacaridosis III , Enfermedades Neurodegenerativas , Enfermedades del Sistema Nervioso Periférico , Polineuropatías , Humanos , Niño , Mucopolisacaridosis III/diagnóstico , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/patología , Polineuropatías/genética , Mutación/genética
8.
Neurol Sci ; 43(4): 2849-2852, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35066644

RESUMEN

INTRODUCTION: Spastic paraplegia type 11 (SPG11) is the most frequent autosomal recessive HSP. Studies on SPG11 patients' fibroblasts, post-mortem brains, and mouse models revealed endolysosomal system dysfunction and lipid accumulation, especially gangliosides. We report a patient with early clinical findings mimicking a GM2-gangliosidosis. METHODS: A clinical, biochemical, and metabolic characterization was performed. Electron microscopy analysis was completed on rectal mucosa and skin biopsy specimens. A NGS panel of genes associated to neuronal ceroid lipofuscinosis and HSP was analyzed. RESULTS: The patient presented with worsening walking difficulty and psychomotor slowdown since childhood; to exclude a neurometabolic storage disease, skin and rectal biopsies were performed: enteric neurons showed lipofuscin-like intracellular inclusions, thus suggesting a possible GM2-gangliosidosis. However, further analysis did not allow to confirm such hypothesis. In adulthood we detected flaccid paraplegia, nystagmus, axonal motor neuropathy, carpus callosum atrophy, and colon atony. Surprisingly, the NGS panel detected two already reported SPG11 mutations in compound heterozygosity. CONCLUSIONS: We describe for the first time pathological hallmarks of SPG11 in enteric neuron from a rectal mucosa biopsy. The report illustrates the possible overlap between SPG11 and GM2-gangliosidosis, especially in the first disease phases and helps to improve our knowledge about SPG11 physiopathology.


Asunto(s)
Gangliosidosis , Paraplejía Espástica Hereditaria , Adulto , Animales , Niño , Humanos , Ratones , Mutación , Proteínas/genética , Paraplejía Espástica Hereditaria/diagnóstico , Paraplejía Espástica Hereditaria/genética
9.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498898

RESUMEN

OBJECTIVE: To define the prevalence of variants in collagen VI genes through a next-generation sequencing (NGS) approach in undiagnosed patients with suspected neuromuscular disease and to propose a diagnostic flowchart to assess the real pathogenicity of those variants. METHODS: In the past five years, we have collected clinical and molecular information on 512 patients with neuromuscular symptoms referred to our center. To pinpoint variants in COLVI genes and corroborate their real pathogenicity, we sketched a multistep flowchart, taking into consideration the bioinformatic weight of the gene variants, their correlation with clinical manifestations and possible effects on protein stability and expression. RESULTS: In Step I, we identified variants in COLVI-related genes in 48 patients, of which three were homozygous variants (Group 1). Then, we sorted variants according to their CADD score, clinical data and complementary studies (such as muscle and skin biopsy, study of expression of COLVI on fibroblast or muscle and muscle magnetic resonance). We finally assessed how potentially pathogenic variants (two biallelic and 12 monoallelic) destabilize COL6A1-A2-A3 subunits. Overall, 15 out of 512 patients were prioritized according to this pipeline. In seven of them, we confirmed reduced or absent immunocytochemical expression of collagen VI in cultured skin fibroblasts or in muscle tissue. CONCLUSIONS: In a real-world diagnostic scenario applied to heterogeneous neuromuscular conditions, a multistep integration of clinical and molecular data allowed the identification of about 3% of those patients harboring pathogenetic collagen VI variants.


Asunto(s)
Colágeno Tipo VI , Enfermedades Neuromusculares , Humanos , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Enfermedades Neuromusculares/epidemiología , Enfermedades Neuromusculares/genética , Homocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Músculos/metabolismo , Mutación
10.
Clin Genet ; 99(3): 462-474, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33368194

RESUMEN

IQSEC2 mutations are associated with IQSEC2-related intellectual disability (ID). Phenotypic spectrum has been better defined in the last few years by the increasing number of reported cases although the genotype-phenotype relationship for IQSEC2 remains overall complex. As for IQSEC2-related ID a wide phenotypic diversity has been described in Rett syndrome (RTT). Several patients harboring IQSEC2 mutations present with clinical symptoms similar to RTT and some cases meet most of the criteria for classic RTT. With the aim of establishing a genotype-phenotype correlation, we collected data of 16 patients harboring IQSEC2 point mutations (15 of them previously unreported) and of five novel patients carrying CNVs encompassing IQSEC2. Most of our patients surprisingly shared a moderate-to-mild phenotype. The similarities in the clinical course between our mild cases and patients with milder forms of atypical RTT reinforce the hypothesis that also IQSEC2 mutated patients may lay under the wide clinical spectrum of RTT and thus IQSEC2 should be considered in the differential diagnosis. Our data confirm that position, type of variant and gender are crucial for IQSEC2-associated phenotype delineation.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Discapacidad Intelectual/genética , Síndrome de Rett/genética , Adolescente , Adulto , Niño , Preescolar , Diagnóstico Diferencial , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Mutación Puntual , Síndrome de Rett/diagnóstico , Secuenciación del Exoma , Adulto Joven
11.
Brain ; 143(8): 2380-2387, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32658972

RESUMEN

The SLC12 gene family consists of SLC12A1-SLC12A9, encoding electroneutral cation-coupled chloride co-transporters. SCL12A2 has been shown to play a role in corticogenesis and therefore represents a strong candidate neurodevelopmental disorder gene. Through trio exome sequencing we identified de novo mutations in SLC12A2 in six children with neurodevelopmental disorders. All had developmental delay or intellectual disability ranging from mild to severe. Two had sensorineural deafness. We also identified SLC12A2 variants in three individuals with non-syndromic bilateral sensorineural hearing loss and vestibular areflexia. The SLC12A2 de novo mutation rate was demonstrated to be significantly elevated in the deciphering developmental disorders cohort. All tested variants were shown to reduce co-transporter function in Xenopus laevis oocytes. Analysis of SLC12A2 expression in foetal brain at 16-18 weeks post-conception revealed high expression in radial glial cells, compatible with a role in neurogenesis. Gene co-expression analysis in cells robustly expressing SLC12A2 at 16-18 weeks post-conception identified a transcriptomic programme associated with active neurogenesis. We identify SLC12A2 de novo mutations as the cause of a novel neurodevelopmental disorder and bilateral non-syndromic sensorineural hearing loss and provide further data supporting a role for this gene in human neurodevelopment.


Asunto(s)
Vestibulopatía Bilateral/genética , Pérdida Auditiva Sensorineural/genética , Trastornos del Neurodesarrollo/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mutación , Adulto Joven
12.
Brain ; 143(12): 3564-3573, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33242881

RESUMEN

KCNN2 encodes the small conductance calcium-activated potassium channel 2 (SK2). Rodent models with spontaneous Kcnn2 mutations show abnormal gait and locomotor activity, tremor and memory deficits, but human disorders related to KCNN2 variants are largely unknown. Using exome sequencing, we identified a de novo KCNN2 frameshift deletion in a patient with learning disabilities, cerebellar ataxia and white matter abnormalities on brain MRI. This discovery prompted us to collect data from nine additional patients with de novo KCNN2 variants (one nonsense, one splice site, six missense variants and one in-frame deletion) and one family with a missense variant inherited from the affected mother. We investigated the functional impact of six selected variants on SK2 channel function using the patch-clamp technique. All variants tested but one, which was reclassified to uncertain significance, led to a loss-of-function of SK2 channels. Patients with KCNN2 variants had motor and language developmental delay, intellectual disability often associated with early-onset movement disorders comprising cerebellar ataxia and/or extrapyramidal symptoms. Altogether, our findings provide evidence that heterozygous variants, likely causing a haploinsufficiency of the KCNN2 gene, lead to novel autosomal dominant neurodevelopmental movement disorders mirroring phenotypes previously described in rodents.


Asunto(s)
Trastornos del Movimiento/genética , Trastornos del Neurodesarrollo/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Adolescente , Adulto , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/psicología , Niño , Preescolar , Fenómenos Electrofisiológicos , Exoma , Mutación del Sistema de Lectura , Variación Genética , Haploinsuficiencia , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/psicología , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/psicología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Trastornos del Movimiento/psicología , Mutación Missense/genética , Trastornos del Neurodesarrollo/psicología , Técnicas de Placa-Clamp , Sustancia Blanca/anomalías , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
13.
Neurol Sci ; 42(6): 2509-2513, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33459893

RESUMEN

The Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy with great clinical and genetic heterogeneity. Mutations in DNM2 have been associated with CMT dominant intermediate B (CMTDIB). However, mutations in the same gene are known to induce also axonal CMT (CMT2M) or centronuclear myopathy. Moreover, the ability of effectively and simultaneously sequencing different CMT-related genes by next-generation sequencing approach makes it possible to detect even the presence of modifier genes that sometimes give reason of clinical variability in the context of complex phenotypes. Here, we describe an Italian family with very variable severity of phenotype among members harboring a novel DNM2 gene mutation which caused a prevalent CMT2M phenotype. The contemporary presence of a de novo variant in PRX gene in the most severely affected family member suggests a possible modulator effect of the PRX variant thus highlighting the possible impact of modifier genes in CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Dinamina II , Miopatías Estructurales Congénitas , Enfermedad de Charcot-Marie-Tooth/genética , Dinamina II/genética , Humanos , Italia , Mutación , Fenotipo
14.
Proc Natl Acad Sci U S A ; 113(11): 3060-5, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929355

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons that leads to progressive paralysis of skeletal muscle. Studies of ALS have revealed defects in expression of acetylcholine receptors (AChRs) in skeletal muscle that occur even in the absence of motor neuron anomalies. The endocannabinoid palmitoylethanolamide (PEA) modified the clinical conditions in one ALS patient, improving muscle force and respiratory efficacy. By microtransplanting muscle membranes from selected ALS patients into Xenopus oocytes, we show that PEA reduces the desensitization of acetylcholine-evoked currents after repetitive neurotransmitter application (i.e., rundown). The same effect was observed using muscle samples from denervated (non-ALS) control patients. The expression of human recombinant α1ß1γδ (γ-AChRs) and α1ß1εδ AChRs (ε-AChRs) in Xenopus oocytes revealed that PEA selectively affected the rundown of ACh currents in ε-AChRs. A clear up-regulation of the α1 subunit in muscle from ALS patients compared with that from non-ALS patients was found by quantitative PCR, but no differential expression was found for other subunits. Clinically, ALS patients treated with PEA showed a lower decrease in their forced vital capacity (FVC) over time as compared with untreated ALS patients, suggesting that PEA can enhance pulmonary function in ALS. In the present work, data were collected from a cohort of 76 ALS patients and 17 denervated patients. Our results strengthen the evidence for the role of skeletal muscle in ALS pathogenesis and pave the way for the development of new drugs to hamper the clinical effects of the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Etanolaminas/uso terapéutico , Terapia Molecular Dirigida , Músculo Esquelético/efectos de los fármacos , Ácidos Palmíticos/uso terapéutico , Receptores Nicotínicos/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Amidas , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/trasplante , Etanolaminas/farmacología , Femenino , Humanos , Masculino , Microinyecciones , Persona de Mediana Edad , Desnervación Muscular , Músculo Esquelético/ultraestructura , Unión Neuromuscular/fisiopatología , Oocitos , Ácidos Palmíticos/farmacología , Receptores Nicotínicos/fisiología , Proteínas Recombinantes de Fusión/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Método Simple Ciego , Xenopus laevis
16.
Cells ; 13(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38391941

RESUMEN

OBJECTIVE: To identify novel biomarkers as an alternative diagnostic tool for limb girdle muscular dystrophy (LGMD). BACKGROUND: LGMD encompasses a group of muscular dystrophies characterized by proximal muscles weakness, elevated CK levels and dystrophic findings on muscle biopsy. Heterozygous CAPN3 mutations are associated with autosomal dominant LGMD-4, while biallelic mutations can cause autosomal recessive LGMD-1. Diagnosis is currently often based on invasive methods requiring muscle biopsy or blood tests. In most cases Western blotting (WB) analysis from muscle biopsy is essential for a diagnosis, as muscle samples are currently the only known tissues to express the full-length CAPN3 isoform. METHODS: We analyzed CAPN3 in a cohort including 60 LGMD patients. Selected patients underwent a complete neurological examination, electromyography, muscle biopsy, and skin biopsies for primary fibroblasts isolation. The amount of CAPN3 was evaluated by WB analysis in muscle and skin tissues. The total RNA isolated from muscle, fibroblast and urine was processed, and cDNA was used for qualitative analysis. The expression of CAPN3 was investigated by qRT-PCR. The CAPN3 3D structure has been visualized and analyzed using PyMOL. RESULTS: Among our patients, seven different CAPN3 mutations were detected, of which two were novel. After sequencing CAPN3 transcripts from fibroblast and urine, we detected different CAPN3 isoforms surprisingly including the full-length transcript. We found comparable protein levels from fibroblasts and muscle tissue; in particular, patients harboring a novel CAPN3 mutation showed a 30% reduction in protein compared to controls from both tissues. CONCLUSIONS: Our findings showed for the first time the presence of the CAPN3 full-length transcript in urine and skin samples. Moreover, we demonstrated surprisingly comparable CAPN3 protein levels between muscle and skin samples, thus allowing us to hypothesize the use of skin biopsy and probably of urine samples as an alternative less invasive method to assess the amount of CAPN3 when molecular diagnosis turns out to be inconclusive.


Asunto(s)
Músculos , Distrofia Muscular de Cinturas , Humanos , Mutación/genética , Músculos/patología , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Heterocigoto , Biomarcadores
17.
Front Integr Neurosci ; 17: 1275794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38390227

RESUMEN

Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of neurodegenerative disorders affecting primarily the cerebellum and/or its afferent tracts, often accompanied by damage of other neurological or extra-neurological systems. Due to the overlap of clinical presentation among ARCAs and the variety of hereditary, acquired, and reversible etiologies that can determine cerebellar dysfunction, the differential diagnosis is challenging, but also urgent considering the ongoing development of promising target therapies. The examination of afferent and efferent visual system may provide neurophysiological and structural information related to cerebellar dysfunction and neurodegeneration thus allowing a possible diagnostic classification approach according to ocular features. While optic coherence tomography (OCT) is applied for the parametrization of the optic nerve and macular area, the eye movements analysis relies on a wide range of eye-tracker devices and the application of machine-learning techniques. We discuss the results of clinical and eye-tracking oculomotor examination, the OCT findings and some advancing of computer science in ARCAs thus providing evidence sustaining the identification of robust eye parameters as possible markers of ARCAs.

18.
Seizure ; 104: 32-37, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36476360

RESUMEN

BACKGROUND: Cabezas syndrome is a rare X-linked disease caused by mutations in CUL4B and characterized by developmental delay/intellectual disability, somatic dysmorphisms, behavioural disorder, ataxia/tremors. Although seizures have been formerly reported, their clinical semiology, EEG features and long-term outcome are largely unknown. PURPOSE: This study aims to expand knowledge on epilepsy associated with Cabezas syndrome and to understand whether different types of variants in the CUL4B gene or brain MRI abnormalities may influence seizure onset and epilepsy course. METHODS: With this in mind, we characterised the epileptic phenotype of a 17-year-old adolescent harbouring a CUL4B novel variant and performed a systematic literature review of CUL4B-associated seizures, analysing mutation types and neuroimaging features as epilepsy predictors. RESULTS: Our case observation indicates that CUL4B-associated epilepsy may also be drug-resistant and persist beyond infancy. Literature analysis shows that 43% of CUL4B patients develop seizures, with no statistically significant differences in epilepsy development according to mutation type and neuroimaging features. CONCLUSION: Our study extends knowledge of CUL4B-associated epilepsy, offering new insights into disease progression.


Asunto(s)
Epilepsia , Discapacidad Intelectual Ligada al Cromosoma X , Humanos , Proteínas Cullin/genética , Electroencefalografía , Epilepsia/diagnóstico por imagen , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Discapacidad Intelectual Ligada al Cromosoma X/complicaciones , Mutación/genética , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Convulsiones/complicaciones
19.
Children (Basel) ; 10(9)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37761403

RESUMEN

Pathogenic loss-of-function variants in the IQ motif and SEC7 domain containing protein 2 (IQSEC2) gene cause intellectual disability with Rett syndrome (RTT)-like features. The aim of this study was to obtain systematic information on the natural history and extra-central nervous system (CNS) manifestations for the Italian IQSEC2 population (>90%) by using structured family interviews and semi-quantitative questionnaires. IQSEC2 encephalopathy prevalence estimate was 7.0 to 7.9 × 10-7. Criteria for typical RTT were met in 42.1% of the cases, although psychomotor regression was occasionally evidenced. Genetic diagnosis was occasionally achieved in infancy despite a clinical onset before the first 24 months of life. High severity in both the CNS and extra-CNS manifestations for the IQSEC2 patients was documented and related to a consistently adverse quality of life. Neurodevelopmental delay was diagnosed before the onset of epilepsy by 1.8 to 2.4 years. An earlier age at menarche in IQSEC2 female patients was reported. Sleep disturbance was highly prevalent (60 to 77.8%), with mandatory co-sleeping behavior (50% of the female patients) being related to de novo variant origin, younger age, taller height with underweight, better social interaction, and lower life quality impact for the family and friends area. In conclusion, the IQSEC2 encephalopathy is a rare and likely underdiagnosed developmental encephalopathy leading to an adverse life quality impact.

20.
Genes (Basel) ; 14(2)2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36833224

RESUMEN

Thanks to advances in gene sequencing, RYR1-related myopathy (RYR1-RM) is now known to manifest itself in vastly heterogeneous forms, whose clinical interpretation is, therefore, highly challenging. We set out to develop a novel unsupervised cluster analysis method in a large patient population. The objective was to analyze the main RYR1-related characteristics to identify distinctive features of RYR1-RM and, thus, offer more precise genotype-phenotype correlations in a group of potentially life-threatening disorders. We studied 600 patients presenting with a suspicion of inherited myopathy, who were investigated using next-generation sequencing. Among them, 73 index cases harbored variants in RYR1. In an attempt to group genetic variants and fully exploit information derived from genetic, morphological, and clinical datasets, we performed unsupervised cluster analysis in 64 probands carrying monoallelic variants. Most of the 73 patients with positive molecular diagnoses were clinically asymptomatic or pauci-symptomatic. Multimodal integration of clinical and histological data, performed using a non-metric multi-dimensional scaling analysis with k-means clustering, grouped the 64 patients into 4 clusters with distinctive patterns of clinical and morphological findings. In addressing the need for more specific genotype-phenotype correlations, we found clustering to overcome the limits of the "single-dimension" paradigm traditionally used to describe genotype-phenotype relationships.


Asunto(s)
Enfermedades Musculares , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Canal Liberador de Calcio Receptor de Rianodina/genética , Enfermedades Musculares/genética , Estudios de Asociación Genética , Genotipo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA