RESUMEN
The study aimed to evaluate the in vitro anthelminthic and antimicrobial activity of silver nanoparticles (AgNPs) against Dactylogyrus minutus and Aeromonas hydrophila, pathogens of Cyprinus carpio Koi. Gill arches of the fish were removed and placed into six-well plates containing 10 mL of tank water with varying concentrations of AgNPs: 100, 400, 500, 600, and 800 mg/L, along with control groups using tank water and distilled water. Each group was tested in triplicate. Parasites were observed every 10 min for 300 min (5 h) using a stereomicroscope, and mortality rates were recorded. Anthelminthic efficacy was calculated at the end of the tests. For the in vitro antimicrobial test, the Minimum Inhibitory Concentration (MIC) of AgNPs was determined by adding 100 µL of Poor Broth (PB) culture medium to all 96 wells of a microplate. The first well was filled with 100 µL of AgNPs, followed by serial dilutions (1:2 ratio). Subsequently, 50 µL of A. hydrophila (1 × 107 CFU/mL) was added to all wells and incubated for 24 h at 28 °C. Results showed that 800 mg/L of AgNPs achieved 87% anthelminthic efficacy within 300 min, while 100 mg/L achieved 47% efficacy. The MIC showed bacterial growth inhibition at 125 mg/mL. Despite the 87% efficacy against parasites within 300 min, AgNPs did not reach 100% efficacy quickly, limiting their potential use in ornamental fish farming. Further studies are needed to assess the toxicity of AgNPs in fish.
RESUMEN
This study investigated the in vitro antimicrobial and anthelmintic effect of copper nanoparticles (CuNPs) against the bacterium Aeromonas hydrophila, the monogeneans Dactylogyrus minutus, Dactylogyrus extensus, Gyrodactylus cyprini, and the cestode Schyzocotyle acheilognathi, as well as their toxicity to Cyprinus carpio Koi. In the antimicrobial in vitro test, the inhibition zone method and minimum inhibitory concentration (MIC) were performed. In order to determine the time and efficacy of monogenean parasite mortality, the parasites were exposed to CuNP concentrations of 20, 50, 100, 150, 200, and 300 mg L-1, and a control group with tank water and one with copper sulphate pentahydrate (CuSO4.5H2O) at a concentration of 0.3 mg L-1, performed in triplicate. The parasites were observed every 10 min for 300 min, and mortality was recorded. For the cestodes, parasites were immersed in CuNP concentrations of 50, 100, 150, and 300 mg L-1. At the end of the in vitro tests, the anthelmintic efficacy of each treatment was calculated. To assess the tolerance and toxicity in fish, they were exposed to CuNP concentrations of 0.6, 1.25, 2.5, 5, 10, 20, and 50 mg L-1 for 12 h. The MIC demonstrated that CuNPs effectively inhibited the growth of A. hydrophila up to a dilution of 12,500 mg L-1 and showed an inhibition zone of 14.0 ± 1.6 mm for CuNPs. The results of anthelmintic activity showed a dose-dependent effect of concentration for both groups of parasites, with the most effective concentration being 300 mg L-1 in 120 min. In the toxicity test, the carps showed tolerance to lower concentrations. The study indicated that CuNPs were effective against the studied pathogens. However, it proved to be toxic to fish at high concentrations. The use of low concentrations is recommended still requires further investigation.