Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
BMC Oral Health ; 24(1): 229, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350956

RESUMEN

OBJECTIVE: The main objective of this study was to estimate the prevalence of molar incisor hypomineralisation (MIH), an alteration of tooth enamel with an estimated worldwide prevalence rate of 14%, among children using primary care services in the Community of Madrid, Spain. MATERIALS AND METHODS: This was a descriptive, cross-sectional and multicentre study. After calibrating all researchers and following the diagnostic criteria of the European Academy of Paediatric Dentistry (EAPD), children aged between 8 and 16 years who were users of the dental services at 8 primary oral health units of the Madrid Health Service (SERMAS) were included. The children underwent a dental examination, and the parents were asked to complete a questionnaire. RESULTS: The prevalence of MIH was 28.63% (CI: 24.61-32.65%). The age cohorts most affected by MIH were 8 years (21.4%) and 11 years (20.7%). The presence of MIH was greater among girls (85; 60.71%) than among boys (55; 39.28%). The mean number of affected teeth per patient was 4.46 ± 2.8. The most frequently affected molar was the upper right first molar (74.3%), and the upper left central incisor was the most affected incisor (37.85%). Opacities were the defects most frequently recorded (63.57%). CONCLUSIONS: The prevalence of MIH in this study is the highest of all relevant studies conducted in Spain.


Asunto(s)
Hipoplasia del Esmalte Dental , Hipomineralización Molar , Niño , Masculino , Femenino , Humanos , Adolescente , Hipoplasia del Esmalte Dental/epidemiología , Estudios Transversales , Prevalencia , Esmalte Dental
2.
Angew Chem Int Ed Engl ; 63(8): e202317343, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38117671

RESUMEN

The implementation of supported metal catalysts heavily relies on the synergistic interactions between metal nanoparticles and the material they are dispersed on. It is clear that interfacial perimeter sites have outstanding skills for turning catalytic reactions over, however, high activity and selectivity of the designed interface-induced metal distortion can also obtain catalysts for the most crucial industrial processes as evidenced in this paper. Herein, the beneficial synergy established between designed Pt nanoparticles and MnO in the course of the reverse water gas shift (RWGS) reaction resulted in a Pt/MnO catalyst having ≈10 times higher activity compared to the reference Pt/SBA-15 catalyst with >99 % CO selectivity. Under activation, a crystal assembly through the metallic Pt (110) and MnO evolved, where the plane distance differences caused a mismatched-row structure in softer Pt nanoparticles, which was identified by microscopic and surface-sensitive spectroscopic characterizations combined with density functional theory simulations. The generated edge dislocations caused the Pt lattice expansion which led to the weakening of the Pt-CO bond. Even though MnO also exhibited an adverse effect on Pt by lowering the number of exposed metal sites, rapid desorption of the linearly adsorbed CO species governed the performance of the Pt/MnO in the RWGS.

3.
Nat Rev Chem ; 8(3): 195-210, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38396010

RESUMEN

Catalytic reactions involving molecular hydrogen are at the heart of many transformations in the chemical industry. Classically, hydrogenations are carried out on Pd, Pt, Ru or Ni catalysts. However, the use of supported Au catalysts has garnered attention in recent years owing to their exceptional selectivity in hydrogenation reactions. This is despite the limited understanding of the physicochemical aspects of hydrogen activation and reaction on Au surfaces. A rational design of new improved catalysts relies on making better use of the hydrogenating properties of Au. This Review analyses the strategies utilized to improve hydrogen-Au interactions, from addressing the importance of the Au particle size to exploring alternative mechanisms for H2 dissociation on Au cations and Au-ligand interfaces. These insights hold the potential to drive future applications of Au catalysis.

4.
Nat Rev Chem ; 8(3): 159-178, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38388837

RESUMEN

The functions of electrochemical energy conversion and storage devices rely on the dynamic junction between a solid and a fluid: the electrochemical interface (EI). Many experimental techniques have been developed to probe the EI, but they provide only a partial picture. Building a full mechanistic understanding requires combining multiple probes, either successively or simultaneously. However, such combinations lead to important technical and theoretical challenges. In this Review, we focus on complementary optoelectronic probes and modelling to address the EI across different timescales and spatial scales - including mapping surface reconstruction, reactants and reaction modulators during operation. We discuss how combining these probes can facilitate a predictive design of the EI when closely integrated with theory.

5.
Nat Commun ; 15(1): 3397, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649389

RESUMEN

Electrochemical CO2 reduction reaction in aqueous electrolytes is a promising route to produce added-value chemicals and decrease carbon emissions. However, even in Gas-Diffusion Electrode devices, low aqueous CO2 solubility limits catalysis rate and selectivity. Here, we demonstrate that when assembled over a heterogeneous electrocatalyst, a film of nitrile-modified Metal-Organic Framework (MOF) acts as a remarkable CO2-solvation layer that increases its local concentration by ~27-fold compared to bulk electrolyte, reaching 0.82 M. When mounted on a Bi catalyst in a Gas Diffusion Electrode, the MOF drastically improves CO2-to-HCOOH conversion, reaching above 90% selectivity and partial HCOOH currents of 166 mA/cm2 (at -0.9 V vs RHE). The MOF also facilitates catalysis through stabilization of reaction intermediates, as identified by operando infrared spectroscopy and Density Functional Theory. Hence, the presented strategy provides new molecular means to enhance heterogeneous electrochemical CO2 reduction reaction, leading it closer to the requirements for practical implementation.

6.
Nat Commun ; 15(1): 3101, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600146

RESUMEN

Metal promotion could unlock high performance in zinc-zirconium catalysts, ZnZrOx, for CO2 hydrogenation to methanol. Still, with most efforts devoted to costly palladium, the optimal metal choice and necessary atomic-level architecture remain unclear. Herein, we investigate the promotion of ZnZrOx catalysts with small amounts (0.5 mol%) of diverse hydrogenation metals (Re, Co, Au, Ni, Rh, Ag, Ir, Ru, Pt, Pd, and Cu) prepared via a standardized flame spray pyrolysis approach. Cu emerges as the most effective promoter, doubling methanol productivity. Operando X-ray absorption, infrared, and electron paramagnetic resonance spectroscopic analyses and density functional theory simulations reveal that Cu0 species form Zn-rich low-nuclearity CuZn clusters on the ZrO2 surface during reaction, which correlates with the generation of oxygen vacancies in their vicinity. Mechanistic studies demonstrate that this catalytic ensemble promotes the rapid hydrogenation of intermediate formate into methanol while effectively suppressing CO production, showcasing the potential of low-nuclearity metal ensembles in CO2-based methanol synthesis.

7.
Pediatr Infect Dis J ; 43(3): e81-e83, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38381955

RESUMEN

The prevalence of post-COVID-19 condition is not well defined. We describe a cohort of 244 children diagnosed with COVID-19 and followed up for 6 months, in which 4.9% of patients had persistent symptoms at 12 weeks. Anosmia was the most frequent symptom. Being female and having more than 3 symptoms in acute infection were associated with an increased risk of post-COVID.


Asunto(s)
COVID-19 , Humanos , Femenino , Niño , Masculino , Prevalencia , COVID-19/epidemiología , Síndrome Post Agudo de COVID-19 , Enfermedad Crónica , Factores de Riesgo , Hospitales
8.
Dent J (Basel) ; 12(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38667996

RESUMEN

Dental development defects (DDDs) are quantitative and/or qualitative alterations produced during odontogenesis that affect both primary and permanent dentition. The etiology remains unknown, being associated with prenatal, perinatal, and postnatal factors. The aims were to identify the possible etiological factors, as well as the prevalence of DDDs in the primary and permanent dentition in a pediatric population. Two hundred twenty-one children between 2 and 15 years of age, patients of the master's degree in Pediatric Dentistry of the Complutense University of Madrid, were reviewed. DDDs were observed in 60 children. Next, a cross-sectional, case-control study was carried out (60 children in the control group and 60 children in the case group). The parents or guardians completed a questionnaire aimed at identifying associated etiological factors. The prevalence of DDDs in patients attending our master's program in both dentitions was 27.15%. Otitis, tonsillitis, high fevers, and medication intake stood out as the most relevant postnatal factors among cases and controls. The permanent maxillary right permanent central incisor and the primary mandibular right second molar were the most affected; there were no differences in relation to gender. One out of three children who presented DDDs in the primary dentition also presented DDDs in the permanent dentition. Prenatal and postnatal etiological factors showed a significant relationship with DDD alterations, considered risk factors for DDDs in both dentitions.

9.
Science ; 384(6702): 1373-1380, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38900890

RESUMEN

The oxygen evolution reaction is the bottleneck to energy-efficient water-based electrolysis for the production of hydrogen and other solar fuels. In proton exchange membrane water electrolysis (PEMWE), precious metals have generally been necessary for the stable catalysis of this reaction. In this work, we report that delamination of cobalt tungstate enables high activity and durability through the stabilization of oxide and water-hydroxide networks of the lattice defects in acid. The resulting catalysts achieve lower overpotentials, a current density of 1.8 amperes per square centimeter at 2 volts, and stable operation up to 1 ampere per square centimeter in a PEMWE system at industrial conditions (80°C) at 1.77 volts; a threefold improvement in activity; and stable operation at 1 ampere per square centimeter over the course of 600 hours.

10.
J Invest Dermatol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39127929

RESUMEN

Skin in vitro models offer much promise for research, testing drugs, cosmetics, and medical devices, reducing animal testing and extensive clinical trials. There are several in vitro approaches to mimicking human skin behavior, ranging from simple cell monolayer to complex organotypic and bioengineered 3-dimensional models. Some have been approved for preclinical studies in cosmetics, pharmaceuticals, and chemicals. However, development of physiologically reliable in vitro human skin models remains in its infancy. This review reports on advances in in vitro complex skin models to study skin homeostasis, aging, and skin disease.

11.
Cell Rep ; 43(7): 114390, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38900636

RESUMEN

Timed feeding drives adipose browning, although the integrative mechanisms for the same remain unclear. Here, we show that twice-a-night (TAN) feeding generates biphasic oscillations of circulating insulin and leptin, representing their entrainment by timed feeding. Insulin and leptin surges lead to marked cellular, functional, and metabolic remodeling of subcutaneous white adipose tissue (sWAT), resulting in increased energy expenditure. Single-cell RNA-sequencing (scRNA-seq) analyses and flow cytometry demonstrate a role for insulin and leptin surges in innate lymphoid type 2 (ILC2) cell recruitment and sWAT browning, since sWAT depot denervation or loss of leptin or insulin receptor signaling or ILC2 recruitment each dampens TAN feeding-induced sWAT remodeling and energy expenditure. Consistently, recreating insulin and leptin oscillations via once-a-day timed co-injections is sufficient to favorably remodel innervated sWAT. Innervation is necessary for sWAT remodeling, since denervation of sWAT, but not brown adipose tissue (BAT), blocks TAN-induced sWAT remodeling and resolution of inflammation. In sum, reorganization of nutrient-sensitive pathways remodels sWAT and drives the metabolic benefits of timed feeding.


Asunto(s)
Tejido Adiposo Pardo , Insulina , Leptina , Animales , Leptina/metabolismo , Insulina/metabolismo , Tejido Adiposo Pardo/metabolismo , Ratones , Ratones Endogámicos C57BL , Metabolismo Energético , Tejido Adiposo Blanco/metabolismo , Masculino , Conducta Alimentaria/fisiología
12.
Cell Stem Cell ; 31(3): 378-397.e12, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38402617

RESUMEN

Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.


Asunto(s)
Hematopoyesis , Hierro , Hematopoyesis/genética , Hierro/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Multipotentes/metabolismo , Regulación de la Expresión Génica , Diferenciación Celular
13.
NPJ Vaccines ; 9(1): 48, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413645

RESUMEN

Age is associated with reduced efficacy of vaccines and linked to higher risk of severe COVID-19. Here we determined the impact of ageing on the efficacy of a SARS-CoV-2 vaccine based on a stabilised Spike glycoprotein (S-29) that had previously shown high efficacy in young animals. Thirteen to 18-month-old golden Syrian hamsters (GSH) and 22-23-month-old K18-hCAE2 mice were immunised twice with S-29 protein in AddaVaxTM adjuvant. GSH were intranasally inoculated with SARS-CoV-2 either two weeks or four months after the booster dose, while all K18-hACE2 mice were intranasally inoculated two weeks after the second immunisation. Body weight and clinical signs were recorded daily post-inoculation. Lesions and viral load were investigated in different target tissues. Immunisation induced seroconversion and production of neutralising antibodies; however, animals were only partially protected from weight loss. We observed a significant reduction in the amount of viral RNA and a faster viral protein clearance in the tissues of immunized animals. Infectious particles showed a faster decay in vaccinated animals while tissue lesion development was not altered. In GSH, the shortest interval between immunisation and inoculation reduced RNA levels in the lungs, while the longest interval was equally effective in reducing RNA in nasal turbinates; viral nucleoprotein amount decreased in both tissues. In mice, immunisation was able to improve the survival of infected animals. Despite the high protection shown in young animals, S-29 efficacy was reduced in the geriatric population. Our research highlights the importance of testing vaccine efficacy in older animals as part of preclinical vaccine evaluation.

14.
Nat Commun ; 15(1): 2349, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514609

RESUMEN

Safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are crucial to fight against the coronavirus disease 2019 pandemic. Most vaccines are based on a mutated version of the Spike glycoprotein [K986P/V987P (S-2P)] with improved stability, yield and immunogenicity. However, S-2P is still produced at low levels. Here, we describe the V987H mutation that increases by two-fold the production of the recombinant Spike and the exposure of the receptor binding domain (RBD). S-V987H immunogenicity is similar to S-2P in mice and golden Syrian hamsters (GSH), and superior to a monomeric RBD. S-V987H immunization confer full protection against severe disease in K18-hACE2 mice and GSH upon SARS-CoV-2 challenge (D614G or B.1.351 variants). Furthermore, S-V987H immunized K18-hACE2 mice show a faster tissue viral clearance than RBD- or S-2P-vaccinated animals challenged with D614G, B.1.351 or Omicron BQ1.1 variants. Thus, S-V987H protein might be considered for future SARS-CoV-2 vaccines development.


Asunto(s)
COVID-19 , Melfalán , SARS-CoV-2 , gammaglobulinas , Cricetinae , Animales , Humanos , Ratones , Mesocricetus , Vacunas contra la COVID-19 , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus/genética , Inmunización , Glicoproteínas , Anticuerpos Neutralizantes , Anticuerpos Antivirales
15.
Nat Comput Sci ; 3(5): 433-442, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-38177837

RESUMEN

Modeling in heterogeneous catalysis requires the extensive evaluation of the energy of molecules adsorbed on surfaces. This is done via density functional theory but for large organic molecules it requires enormous computational time, compromising the viability of the approach. Here we present GAME-Net, a graph neural network to quickly evaluate the adsorption energy. GAME-Net is trained on a well-balanced chemically diverse dataset with C1-4 molecules with functional groups including N, O, S and C6-10 aromatic rings. The model yields a mean absolute error of 0.18 eV on the test set and is 6 orders of magnitude faster than density functional theory. Applied to biomass and plastics (up to 30 heteroatoms), adsorption energies are predicted with a mean absolute error of 0.016 eV per atom. The framework represents a tool for the fast screening of catalytic materials, particularly for systems that cannot be simulated by traditional methods.

16.
ACS Catal ; 13(24): 15977-15990, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38125976

RESUMEN

The development of selective catalysts for direct conversion of ammonia into nitrous oxide, N2O, will circumvent the conventional five-step manufacturing process and enable its wider utilization in oxidation catalysis. Deviating from commonly accepted catalyst design principles for this reaction, reliant on manganese oxide, we herein report an efficient system comprised of isolated chromium atoms (1 wt %) stabilized in the ceria lattice by coprecipitation. The latter, in contrast to a simple impregnation approach, ensures firm metal anchoring and results in stable and selective N2O production over 100 h on stream up to 79% N2O selectivity at full NH3 conversion. Raman, electron paramagnetic resonance, and in situ UV-vis spectroscopies reveal that chromium incorporation enhances the density of oxygen vacancies and the rate of their generation and healing. Accordingly, temporal analysis of products, kinetic studies, and atomistic simulations show lattice oxygen of ceria to directly participate in the reaction, establishing the cocatalytic role of the carrier. Coupled with the dynamic restructuring of chromium sites to stabilize intermediates of N2O formation, these factors enable catalytic performance on par with or exceeding benchmark systems. These findings demonstrate how nanoscale engineering can elevate a previously overlooked metal into a highly competitive catalyst for selective ammonia oxidation to N2O, paving the way toward industrial implementation.

17.
Front Immunol ; 14: 1291972, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38124756

RESUMEN

Most COVID-19 vaccines are based on the SARS-CoV-2 Spike glycoprotein (S) or their subunits. However, S shows some structural instability that limits its immunogenicity and production, hampering the development of recombinant S-based vaccines. The introduction of the K986P and V987P (S-2P) mutations increases the production and immunogenicity of the recombinant S trimer, suggesting that these two parameters are related. Nevertheless, S-2P still shows some molecular instability and it is produced with low yield. Here we described a novel set of mutations identified by molecular modeling and located in the S2 region of the S-2P that increase its production up to five-fold. Besides their immunogenicity, the efficacy of two representative S-2P-based mutants, S-29 and S-21, protecting from a heterologous SARS-CoV-2 Beta variant challenge was assayed in K18-hACE2 mice (an animal model of severe SARS-CoV-2 disease) and golden Syrian hamsters (GSH) (a moderate disease model). S-21 induced higher level of WH1 and Delta variants neutralizing antibodies than S-2P in K18-hACE2 mice three days after challenge. Viral load in nasal turbinate and oropharyngeal samples were reduced in S-21 and S-29 vaccinated mice. Despite that, only the S-29 protein protected 100% of K18-hACE2 mice from severe disease. When GSH were analyzed, all immunized animals were protected from disease development irrespectively of the immunogen they received. Therefore, the higher yield of S-29, as well as its improved immunogenicity and efficacy protecting from the highly pathogenic SARS-CoV-2 Beta variant, pinpoint the S-29 mutant as an alternative to the S-2P protein for future SARS-CoV-2 vaccine development.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , Ratones , SARS-CoV-2/genética , Mesocricetus , COVID-19/prevención & control , Vacunas contra la COVID-19
18.
Cient. dent. (Ed. impr.) ; 21(1): 1-8, abr.-2024. tab
Artículo en Español | IBECS (España) | ID: ibc-232707

RESUMEN

Introducción: El tratamiento pulpar de dientes inmaduros es un procedimiento desafi ante. Los dientes inmaduros tienen unos conductos anchos, paredes dentinarias delgadas y ápices abiertos, además de ser más propensos a la fractura y con mal pronóstico a largo plazo. La revascularización de un diente inmaduro intenta preservar los dientes el mayor tiempo posible, pero hay fracasos porque es difícil lograr una desinfección óptima del sistema de conductos radiculares. Métodos: Se realizó una búsqueda bibliográfi ca consultando las bases de datos electrónicas PubMed y Web of cience de los últimos 10 años, utilizando palabras clave y criterios de elegibilidad. Resultados: El proceso de búsqueda arrojó 635 artículos totales. Tras aplicar fi ltros, eliminar duplicados y seleccionar artículos por título y resumen, solo 27 fueron para el estudio. Conclusiones: La revitalización pulpar tiene altas tasas de supervivencia en el tratamiento de dientes permanentes inmaduros necróticos. Son necesarios ensayos clínicos aleatorios para comparar el efecto de la fi brina rica en plaquetas, el plasma rico en plaquetas y el sangrado inducido sobre la revitalización de un diente con pulpa necrótica. Uno de los principales problemas de la revitalización pulpar es la decoloración coronal. La triple pasta antibiótica es un agente antimicrobiano muy efi caz, pero las altas concentraciones podrían tener un efecto perjudicial sobre la supervivencia de las células madre. (AU)


Introduction: Treatment of affected immature teeth is a challenging procedure. Immature teeth have wide canals, thin dentin walls and open apices, in addition to being more prone to fracture and with a poor long-term prognosis. Revascularization of an immature tooth attempts to preserve the teeth as long as possible, but there are failures because it is diffi cult to achieve optimal disinfection of the root canal system. Methods: An exhaustive search was carried out by consulting the electronic databases PubMed and Web of Science of the last 10 years, using keywords and eligibility criteria. Results: The search process yielded 635 total articles. After applying fi lters, eliminating duplicates and selecting articles by title and abstract, only 27 were for the present study. Conclusions: Pulp revitalization has high survival rates in the treatment of necrotic immature permanent teeth. Randomized clinical trials are needed to compare the effect of platelet-richfi brin, platelet-rich plasma, and induced bleeding on the revitalization of a tooth with necrotic pulp. One of the main problems of pulp revitalization is coronal discoloration. Triple antibiotic paste is a very effective antimicrobial agent, but high concentrations could have a detrimental effect on stem cell survival. (AU)


Asunto(s)
Humanos , Dentición Permanente , Fibrina Rica en Plaquetas , Necrosis de la Pulpa Dental , Regeneración , Diente Primario
20.
Cient. dent. (Ed. impr.) ; 18(4): 225-231, sept. 2021. ilus, tab
Artículo en Español | IBECS (España) | ID: ibc-217154

RESUMEN

Introducción: El fluoruro diamino de plata deriva de la unión del nitrato de plata y fluoruro. Reduce el avance de la caries y la degeneración de colágeno en la dentina. Impide la desmineralización y fomenta la remineralización del esmalte y la dentina. Por su sencilla aplicación es un material de gran interés en aquellos niños con ansiedad o poco colaboradores. El objetivo de esta revisión es comparar las recomendaciones de uso, frecuencia y porcentaje de aplicación del fluoruro diamino de plata en dentición temporal. Métodos: Se realizó una búsqueda en las bases de datos Pubmed/Medline y Science Direct usando términos Mesh. Se han incluido estudios realizados en pacientes entre 0 y 5 años, publicados entre 2016-2020. Resultados: Se obtuvieron 12 artículos para examinar y contrastar los protocolos de porcentaje y continuidad de aplicación del fluoruro diamino de plata. Dicho material ha sido analizado en referencia a diversas variables como su frecuencia de aplicación, concentración y seguimiento, entre otros. Se describen los resultados de fluoruro diamino de plata en el microbioma presente en la placa de individuos y se cotejan los rasgos de microbioma asistentes en la placa entre la caries detenida y activa después de tratamiento. Gracias a las ventajas de este material se consigue un mejor manejo de conducta del paciente, disminuyendo su ansiedad. Conclusiones: Según los resultados analizados la aplicación más efectiva del fluoruro diamino de plata es al 38% cada 6 meses. (AU)


Introduction: Silver diamine fluoride is derived from the union of silver nitrate and fluoride. Reduce the progression of cavities and collagen degeneration in the dentin. Prevents demineralization and promotes remineralization of enamel and dentin. Due to its simple application, it is a material of great interest to those children with anxiety or little collaborators. The objective of this review is to compare the recommendations for use, frequency and percentage of application of silver diamine fl uoride in primary dentition. Methods: The Pubmed / Medline and Science Direct databases were searched using Mesh terms. Studies carried out in patients between 0 and 5 years old, published between 2016-2020, have been included. Results: Twelve articles were obtained to examine and contrast the protocols of percentage and continuity of application of silver diamine fluoride. This material has been analyzed in reference to various variables such as its frequency of application, concentration and monitoring, among others. The results of silver diamine fluoride in the microbiome present in the plate of individuals are described and the assisting microbiome traits in the plate are compared between the arrested and active caries after treatment. Thanks to the advantages of this material, a better management of the patient’s behavior is achieved, reducing their anxiety. Conclusions: According to the results analyzed, the most effective application of silver diamine fl uoride is at 38% every 6 months. (AU)


Asunto(s)
Humanos , Masculino , Femenino , Recién Nacido , Lactante , Preescolar , Niño , Fluoruros/uso terapéutico , Dentición , Nitrato de Plata/uso terapéutico , Caries Dental , Diaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA