Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 460(7254): 510-4, 2009 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19578359

RESUMEN

Development normally occurs similarly in all individuals within an isogenic population, but mutations often affect the fates of individual organisms differently. This phenomenon, known as partial penetrance, has been observed in diverse developmental systems. However, it remains unclear how the underlying genetic network specifies the set of possible alternative fates and how the relative frequencies of these fates evolve. Here we identify a stochastic cell fate determination process that operates in Bacillus subtilis sporulation mutants and show how it allows genetic control of the penetrance of multiple fates. Mutations in an intercompartmental signalling process generate a set of discrete alternative fates not observed in wild-type cells, including rare formation of two viable 'twin' spores, rather than one within a single cell. By genetically modulating chromosome replication and septation, we can systematically tune the penetrance of each mutant fate. Furthermore, signalling and replication perturbations synergize to significantly increase the penetrance of twin sporulation. These results suggest a potential pathway for developmental evolution between monosporulation and twin sporulation through states of intermediate twin penetrance. Furthermore, time-lapse microscopy of twin sporulation in wild-type Clostridium oceanicum shows a strong resemblance to twin sporulation in these B. subtilis mutants. Together the results suggest that noise can facilitate developmental evolution by enabling the initial expression of discrete morphological traits at low penetrance, and allowing their stabilization by gradual adjustment of genetic parameters.


Asunto(s)
Bacillus subtilis/fisiología , Evolución Biológica , Regulación Bacteriana de la Expresión Génica , Bacillus subtilis/genética , Replicación del ADN , Esporas Bacterianas/crecimiento & desarrollo
2.
J Neurochem ; 116(5): 909-15, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21214554

RESUMEN

Astrocytes possess much of the same exocytotic protein machinery as neurons do and can release various gliotransmitters stored in their secretory vesicles. An essential component of this exocytotic machinery is the vesicle-associated membrane protein synaptobrevin 2 (Sb2). In order to assess whether vesicular age plays a role in determining the intracellular location of vesicles in astrocytes, we generated a fluorescent chimeric form of Sb2. We appended the Sb2 cytosolic N-terminus with the fluorescent 'timer' protein DsRedE5, which changes its fluorescence emission from green to red as it ages. We found that Sb2-containing vesicles in astrocytes segregate and localize intracellularly in an age dependent manner. Younger vesicles predominately localize at the periphery of cell somata and processes, while older vesicles predominately locate at the central portion of the cell body. These findings raise the notion that there might be differential astrocyte-neuron signaling at sites away or at the tripartite synapse that could be modulated by the age of vesicles and/or their cargo.


Asunto(s)
Envejecimiento , Astrocitos/citología , Vesículas Secretoras/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Luminiscentes/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Transfección , Corteza Visual/citología
3.
Science ; 351(6270): 275-281, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26816379

RESUMEN

Mitochondria undergo fragmentation in response to electron transport chain (ETC) poisons and mitochondrial DNA-linked disease mutations, yet how these stimuli mechanistically connect to the mitochondrial fission and fusion machinery is poorly understood. We found that the energy-sensing adenosine monophosphate (AMP)-activated protein kinase (AMPK) is genetically required for cells to undergo rapid mitochondrial fragmentation after treatment with ETC inhibitors. Moreover, direct pharmacological activation of AMPK was sufficient to rapidly promote mitochondrial fragmentation even in the absence of mitochondrial stress. A screen for substrates of AMPK identified mitochondrial fission factor (MFF), a mitochondrial outer-membrane receptor for DRP1, the cytoplasmic guanosine triphosphatase that catalyzes mitochondrial fission. Nonphosphorylatable and phosphomimetic alleles of the AMPK sites in MFF revealed that it is a key effector of AMPK-mediated mitochondrial fission.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Mitocondrias/fisiología , Dinámicas Mitocondriales , Estrés Fisiológico , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Adenosina Monofosfato/metabolismo , Secuencias de Aminoácidos , Línea Celular Tumoral , Citoplasma/enzimología , Dactinomicina/análogos & derivados , Dactinomicina/farmacología , Dinaminas , Activación Enzimática , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Rotenona/farmacología
4.
Protein Sci ; 24(3): 386-94, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25581164

RESUMEN

Mitochondrial fission requires recruitment of dynamin-related protein 1 (Drp1) to the mitochondrial surface, where assembly leads to activation of its GTP-dependent scission function. MiD49 and MiD51 are two receptors on the mitochondrial outer membrane that can recruit Drp1 to facilitate mitochondrial fission. Structural studies indicated that MiD51 has a variant nucleotidyl transferase fold that binds an ADP co-factor essential for activation of Drp1 function. MiD49 shares sequence homology with MiD51 and regulates Drp1 function. However, it is unknown if MiD49 binds an analogous co-factor. Because MiD49 does not readily crystallize, we used structural predictions and biochemical screening to identify a surface entropy reduction mutant that facilitated crystallization. Using molecular replacement, we determined the atomic structure of MiD49 to 2.4 Å. Like MiD51, MiD49 contains a nucleotidyl transferase domain; however, the electron density provides no evidence for a small-molecule ligand. Structural changes in the putative nucleotide-binding pocket make MiD49 incompatible with an extended ligand like ADP, and critical nucleotide-binding residues found in MiD51 are not conserved. MiD49 contains a surface loop that physically interacts with Drp1 and is necessary for Drp1 recruitment to the mitochondrial surface. Our results suggest a structural basis for the differential regulation of MiD51- versus MiD49-mediated fission.


Asunto(s)
Dinaminas/química , Dinaminas/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
5.
Structure ; 22(3): 367-77, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24508339

RESUMEN

Mitochondrial fission requires recruitment of dynamin-related protein 1 (Drp1) to the mitochondrial surface and activation of its GTP-dependent scission function. The Drp1 receptors MiD49 and MiD51 recruit Drp1 to facilitate mitochondrial fission, but their mechanism of action is poorly understood. Using X-ray crystallography, we demonstrate that MiD51 contains a nucleotidyl transferase domain that binds ADP with high affinity. MiD51 recruits Drp1 via a surface loop that functions independently of ADP binding. However, in the absence of nucleotide binding, the recruited Drp1 cannot be activated for fission. Purified MiD51 strongly inhibits Drp1 assembly and GTP hydrolysis in the absence of ADP. Addition of ADP relieves this inhibition and promotes Drp1 assembly into spirals with enhanced GTP hydrolysis. Our results reveal ADP as an essential cofactor for MiD51 during mitochondrial fission.


Asunto(s)
Adenosina Difosfato/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Citosol/metabolismo , Dinaminas/química , Dinaminas/genética , Dinaminas/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Proteínas Mitocondriales/genética , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/genética
6.
Mol Biol Cell ; 24(5): 659-67, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23283981

RESUMEN

Several mitochondrial outer membrane proteins-mitochondrial fission protein 1 (Fis1), mitochondrial fission factor (Mff), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51, respectively)-have been proposed to promote mitochondrial fission by recruiting the GTPase dynamin-related protein 1 (Drp1), but fundamental issues remain concerning their function. A recent study supported such a role for Mff but not for Fis1. In addition, it is unclear whether MiD49 and MiD51 activate or inhibit fission, because their overexpression causes extensive mitochondrial elongation. It is also unknown whether these proteins can act in the absence of one another to mediate fission. Using Fis1-null, Mff-null, and Fis1/Mff-null cells, we show that both Fis1 and Mff have roles in mitochondrial fission. Moreover, immunofluorescence analysis of Drp1 suggests that Fis1 and Mff are important for the number and size of Drp1 puncta on mitochondria. Finally, we find that either MiD49 or MiD51 can mediate Drp1 recruitment and mitochondrial fission in the absence of Fis1 and Mff. These results demonstrate that multiple receptors can recruit Drp1 to mediate mitochondrial fission.


Asunto(s)
Dinaminas/metabolismo , Proteínas de la Membrana/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factores de Elongación de Péptidos/metabolismo , Animales , Dinaminas/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/genética , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Factores de Elongación de Péptidos/genética , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA