Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chromatogr A ; 1666: 462850, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131517

RESUMEN

This work explores the effects of three selected fluoroalcohols - 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), 1,1,1,3,3,3-hexafluorotert­butyl alcohol (HFTB) and hexafluoro-2,3-(trifluoromethyl)-2,3-butanediol (PP) as novel eluent additives and their effect on the retention of basic and acidic analytes, using a reversed phase (RP) column with a fluorophenyl (PFP) stationary phase. In order to observe the changes in the model analytes' retention, chromatograms were obtained at multiple (5.0; 6.0; 7.0; 8.5; 9.0 and 9.5) pH values depending on the eluent. The retention observed with fluoroalcohols was compared with that of a conventional eluent additive - ammonium acetate. When fluoroalcohols were used as eluent additives, a decrease in the retention factors (compared with ammonium acetate) was generally observed for strong acids. The retention factors of strong bases were generally higher when using HFIP and HFTB as eluent additives. The behaviour of weak bases and weak acids was more nuanced, potentially enabling interesting selectivity. The extent of the effect regarding different fluoroalcohols also varied, with HFIP and HFTB having a more significant effect on the retention of analytes than PP. The retention data were interpreted in terms of the hypothesis that four interactions are at play: (a) hydrophobic retention typical to RP; (b) π-π interactions between the analytes containing an aromatic ring and the aromatic rings on the stationary phase; (c) charge-charge or hydrogen bond interactions between the analytes and partially deprotonated fluoroalcohols adsorbed on the stationary phase and (d) a hydrogen bond or charge-charge interaction between the free silanol groups or their deprotonated forms on the stationary phase and the analytes (either neutral or ionic). Alternative selectivity obtained through fluoroalcohols on the PFP stationary phase was compared with the C18 and biphenyl stationary phases. It was demonstrated that at the same eluent pH but with a different buffer system and/or different RP stationary phases, very different selectivity and retention order can be obtained.


Asunto(s)
Ácidos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas
2.
J Chromatogr A ; 1613: 460667, 2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-31708217

RESUMEN

This research focuses on retention mechanisms in a LC column with C18 stationary phase when novel eluent additives (HFIP, HFTB and TFE as well as NFTB and perfluoropinacol) are used. The retention factors between novel eluent additives and conventional ones like ammonium acetate and ammonium bicarbonate at different eluent pH values were compared. A simple set of drug-like molecules, widely spread over different logP values, containing protonated and deprotonated acids and bases was selected for this investigation. HFIP, HFTB, NFTB and PP demonstrated strong influence on basic polar analytes in basic medium. These additives drastically increased retention. A decrease in retention was observed for acidic analytes when novel eluent additives were used. Additionally, for the first time, the absolute pH (pHabs) scale was used for expressing the mobile phase pH.


Asunto(s)
Cromatografía Liquida , Espectrometría de Masas en Tándem , Acetatos/química , Ácidos , Bicarbonatos/química , Fluorocarburos/química , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA