Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 473: 116596, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37328117

RESUMEN

The hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs) plays a pivotal role in pulmonary arterial remodeling (PAR) of hypoxia-induced pulmonary hypertension (HPH). 4-Terpineol is a constituent of Myristic fragrant volatile oil in Santan Sumtang. Our previous study found that Myristic fragrant volatile oil alleviated PAR in HPH rats. However, the effect and pharmacological mechanism of 4-terpineol in HPH rats remain unexplored. Male Sprague-Dawley rats were exposed to hypobaric hypoxia chamber (simulated altitudes of 4500 m) for 4 weeks to establish an HPH model in this study. During this period, rats were intragastrically administrated with 4-terpineol or sildenafil. After that, hemodynamic indexes and histopathological changes were assessed. Moreover, a hypoxia-induced cellular proliferative model was established by exposing PASMCs to 3% O2. PASMCs were pretreated with 4-terpineol or LY294002 to explore whether 4-terpineol targeted PI3K/Akt signaling pathway. The PI3K/Akt-related proteins expression was also accessed in lung tissues of HPH rats. We found that 4-terpineol attenuated mPAP and PAR in HPH rats. Then, cellular experiments showed 4-terpineol inhibited hypoxia-induced PASMCs proliferation via down-regulating PI3K/Akt expression. Furthermore, 4-terpineol decreased the p-Akt, p-p38, and p-GSK-3ß protein expression, as well as reduced the PCNA, CDK4, Bcl-2 and Cyclin D1 protein levels, while increasing levels of cleaved caspase 3, Bax, and p27kip1in lung tissues of HPH rats. Our results suggested that 4-terpineol mitigated PAR in HPH rats by inhibiting the proliferation and inducing apoptosis of PASMCs through suppression of the PI3K/Akt-related signaling pathway.


Asunto(s)
Hipertensión Pulmonar , Aceites Volátiles , Ratas , Masculino , Animales , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/prevención & control , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Remodelación Vascular , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Transducción de Señal , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Arteria Pulmonar , Proliferación Celular , Aceites Volátiles/farmacología , Miocitos del Músculo Liso
2.
Toxicol Appl Pharmacol ; 466: 116478, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36940862

RESUMEN

Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) is considered a major contributor to elevated pulmonary vascular resistance and a key mechanism of vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Kaempferol is a natural flavonoid compound and can be derived from numerous common medicinal herbs and vegetables, which exhibit antiproliferative and proapoptotic properties, however, the effects of kaempferol on vascular remodeling in HPH remain unexplored. In this study, SD rats were placed in a hypobaric hypoxia chamber for four weeks to establish a pulmonary hypertension model and given either kaempferol or sildenafil (an inhibitor of PDE-5) during days 1-28, after which the hemodynamic parameter and pulmonary vascular morphometry were assessed. Furthermore, primary rat PASMCs were exposed to hypoxic conditions to generate a cell proliferation model, then incubated with either kaempferol or LY294002 (an inhibitor of PI3K). Immunoblotting and real-time quantitative PCR assessed the protein and mRNA expression levels in HPH rat lungs and PASMCs. We found that kaempferol reduced pulmonary artery pressure and pulmonary vascular remodeling, and alleviated right ventricular hypertrophy in HPH rats. The mechanistic analysis demonstrated that kaempferol reduced the protein levels of phosphorylation of Akt and GSK3ß, leading to decreased expression of pro-proliferation (CDK2, CDK4, Cyclin D1, and PCNA) and anti-apoptotic related proteins (Bcl-2) and increased expression of pro-apoptosis proteins (Bax and cleaved caspase 3). These results collectively demonstrate that kaempferol ameliorates HPH in rats by inhibiting PASMC proliferation and pro-apoptosis via modulation of the Akt/GSK3ß/CyclinD axis.


Asunto(s)
Hipertensión Pulmonar , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas Sprague-Dawley , Remodelación Vascular , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Quempferoles/farmacología , Pulmón/metabolismo , Hipoxia/metabolismo , Arteria Pulmonar , Proliferación Celular , Miocitos del Músculo Liso
3.
Cell Biol Toxicol ; 39(3): 867-883, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34537908

RESUMEN

Prenatal dexamethasone exposure (PDE) induces long-term reproductive toxicity in female offspring. We sought to explore the transgenerational inheritance effects of PDE on diminished ovarian reserve (DOR) in female offspring. Dexamethasone was subcutaneously administered into pregnant Wistar rats from gestational day 9 (GD9) to GD20 to obtain fetal and adult offspring of the F1 generation. F1 adult females were mated with normal males to produce the F2 generation, and the F3 generation. The findings showed decrease of serum levels of anti-Müllerian hormone (AMH) that in the PDE group, decrease in number of primordial follicles, and upregulation of miR-17-5p expression before birth in F1 offspring rats. Expression of cyclin-dependent kinase inhibitor 1B (CDKN1B) and Forkhead Box L2 (FOXL2) were downregulated, and binding of FOXL2 and the CDKN1B promoter region was decreased in PDE groups of the F1, F2, and F3 generations. In vitro intervention experiments showed that glucocorticoid receptor (GR) was involved in activity of dexamethasone. These findings indicate that PDE can activate GR in fetal rat ovary and induce DOR of offspring, and its heritability is mediated by the cascade effect of miR-17-5p/FOXL2/CDKN1B. Increase in miR-17-5p expression in oocytes is the potential molecular basis for transgenerational inheritance of PDE effects.


Asunto(s)
MicroARNs , Reserva Ovárica , Efectos Tardíos de la Exposición Prenatal , Embarazo , Masculino , Humanos , Ratas , Animales , Femenino , Ratas Wistar , Dexametasona/efectos adversos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Reserva Ovárica/genética , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/genética , Oocitos , MicroARNs/genética , Proteína Forkhead Box L2
4.
J Pharmacol Sci ; 144(4): 237-244, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33070843

RESUMEN

Hypoxic pulmonary hypertension (HPH) is a progressive and irreversible disease that reduces survival. Echinacoside is a phenylethanoid glycoside from Tibetan herbs known for its vasorelaxant effect and for inhibiting the proliferation of rat pulmonary arterial smooth muscle cells. This study aimed to investigate the effect of echinacoside on HPH. Sprague Dawley rats were housed in a hypobaric hypoxia chamber (4500 m) for 28 days to obtain the HPH model. Echinacoside (3.75, 7.5, 15, 30 and 40 mg/kg) was administered by intraperitoneal injection from the 1st to the 28th day. The mean pulmonary artery pressure (mPAP), right ventricular hypertrophy index, hemoglobin, hematocrit, red blood cell concentration and morphological change of pulmonary arteries were evaluated. Vascular perfusion assay was used to assess the pulmonary artery function. Echinacoside reduced mPAP, hemoglobin, hematocrit, right ventricular hypertrophy index and mean wall thickness% of pulmonary arteries in HPH rats. It significantly increased maximum vasoconstriction percentage of pulmonary arteries induced by noradrenaline in a dose-dependent manner. In addition, it improved the responsiveness of pulmonary arteries to acetylcholine and sodium nitroprusside. Therefore, Echinacoside might be an effective treatment against HPH, since it regulated pulmonary artery endothelium and smooth muscle layer function and improved the remodeling of pulmonary artery.


Asunto(s)
Glicósidos/administración & dosificación , Glicósidos/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/etiología , Hipoxia/complicaciones , Fitoterapia , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiopatología , Remodelación Vascular/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glicósidos/uso terapéutico , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/prevención & control , Técnicas In Vitro , Inyecciones Intraperitoneales , Masculino , Ratas Sprague-Dawley , Vasodilatadores
5.
Wilderness Environ Med ; 31(4): 400-406, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33132032

RESUMEN

INTRODUCTION: Our previous study showed that high-fat diet inhibited the increase in nitric oxide and endothelial nitric oxide synthase expression in the aortic endothelium of rats exposed to hypoxia, and hypoxia plus a high-fat diet led to earlier and more severe vascular endothelial dysfunction (VED) than hypoxia alone. The purpose of the present study was to investigate the effects of L-arginine on high-fat diet-induced VED of rats in hypoxia. METHODS: Forty male Sprague-Dawley rats were randomly divided into 4 groups and treated with hypoxia (H group), hypoxia plus high-fat diet (H+HFD group), hypoxia plus L-arginine (H+L-Arg group), and hypoxia plus high-fat diet and L-arginine (H+HFD+L-Arg group) for 1 wk. Hypoxia was simulated in a hypobaric chamber with an altitude of 5000 m. Aortic morphology and endothelium-dependent vasorelaxation were used to assess VED. RESULTS: High-fat diet impaired vascular remodeling and reduced endothelium-dependent vasodilator response to acetylcholine in rats exposed to hypoxia, secondary to dysregulation of the nitric oxide pathway. L-arginine supplementation significantly increased plasma nitrates and nitrites and endothelial nitric oxide synthase mRNA levels and improved ultrastructural changes in aortic endothelium and endothelium-dependent vasodilator response. CONCLUSIONS: L-arginine prevents aortic ultrastructural changes and reverses VED induced by high-fat diet in rats exposed to hypoxia, which may have implications for VED induced by high-fat diet in high altitude dwellers.


Asunto(s)
Aorta/efectos de los fármacos , Arginina/farmacología , Dieta Alta en Grasa/efectos adversos , Endotelio Vascular/efectos de los fármacos , Animales , Arginina/administración & dosificación , Peso Corporal/efectos de los fármacos , Suplementos Dietéticos , Hipoxia , Masculino , Malondialdehído/sangre , Óxido Nítrico/sangre , ARN Mensajero , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/sangre
6.
Pak J Pharm Sci ; 30(5): 1629-1634, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29084683

RESUMEN

This study aimed to investigate the efficacy of crocin alone and in combination with cisplatin in the therapy of gastric carcinoma cells. In this study, human gastric carcinoma cell line BGC-823 was purchased and maintained in standard condition. Crocin, cisplatin and crocin plus cisplatin diluted to different concentrations were added into medium, respectively. MTT assay and flow cytometry were performed to test the anti-proliferation effects and apoptosis rates of cells, respectively. In addition, quantitative RT-PCR was used to detect the mRNA expression of apoptosis-related genes, such as p53, Bax and Bcl-2. After treated with different concentrations of crocin, the inhibition ratio and apoptosis rate of BGC-823 cells were not significantly changed. However, the tumor cell inhibition ratio and apoptosis rate in crocin plus cisplatin group were significantly higher than that in cisplatin, crocin and control group (p<0.05). The treatment of crocin plus cisplatin significantly increased the expression of p53 and Bax (p< 0.05), and significantly decreased the Bcl-2 expression (p<0.05). Collectively, our data demonstrated for the first time that crocin plus cisplatin may be used as a new anticancer drug for the treatment of gastric cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Carotenoides/farmacología , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
7.
Cancer Cell Int ; 15: 81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26279639

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rhodiola algida var. tangutica is a traditional Tibetan herb. Its root and rhizome have been successfully used as an effective clinical remedy for the prevention and treatment of cancer and high-altitude sickness. This study aimed to investigate the effect of Rhodiola algida var. tangutica on hypoxic MCF-7 breast cancer cells and the underlying mechanisms. MATERIALS AND METHODS: The antiproliferative effects of R. algida on MCF-7 breast cancer cells were compared in vitro under hypoxic and normal conditions by using MTT analysis. The influence of R. algida on cancer cell apoptosis was determined by flow cytometry. The expression levels of hypoxia-inducible factor (HIF)-1α and HIF-2α were evaluated by western blot analysis. RESULTS: R. algida inhibited the proliferation of MCF-7 breast cancer cells in a dose- and time-dependent manner. The results of flow cytometry indicated that the antiproliferative effect of R. algida was mediated by apoptosis induction. Pretreatment with R. algida significantly suppressed the hypoxia-induced proliferation and expression of HIF-1α and HIF-2α in MCF-7 breast cancer cells. CONCLUSIONS: R. algida might exert an anti-carcinogenic effect on MCF-7 breast cancer cells by decreasing the protein levels of HIF-1α and HIF-2α, which are overexpressed under hypoxic conditions. This effect might be elicited by inhibiting the hypoxia-induced proliferation of MCF-7 breast cancer cells.

8.
Acta Pharmacol Sin ; 36(5): 587-96, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25864652

RESUMEN

AIM: Sustained pulmonary vasoconstriction as experienced at high altitude can lead to pulmonary hypertension (PH). The main purpose of this study is to investigate the vasorelaxant effect of echinacoside (ECH), a phenylethanoid glycoside from the Tibetan herb Lagotis brevituba Maxim and Cistanche tubulosa, on the pulmonary artery and its potential mechanism. METHODS: Pulmonary arterial rings obtained from male Wistar rats were suspended in organ chambers filled with Krebs-Henseleit solution, and isometric tension was measured using a force transducer. Intracellular Ca(2+) levels were measured in cultured rat pulmonary arterial smooth muscle cells (PASMCs) using Fluo 4-AM. RESULTS: ECH (30-300 µmol/L) relaxed rat pulmonary arteries precontracted by noradrenaline (NE) in a concentration-dependent manner, and this effect could be observed in both intact endothelium and endothelium-denuded rings, but with a significantly lower maximum response and a higher EC50 in endothelium-denuded rings. This effect was significantly blocked by L-NAME, TEA, and BaCl2. However, IMT, 4-AP, and Gli did not inhibit ECH-induced relaxation. Under extracellular Ca(2+)-free conditions, the maximum contraction was reduced to 24.54%±2.97% and 10.60%±2.07% in rings treated with 100 and 300 µmol/L of ECH, respectively. Under extracellular calcium influx conditions, the maximum contraction was reduced to 112.42%±7.30%, 100.29%±8.66%, and 74.74%±4.95% in rings treated with 30, 100, and 300 µmol/L of ECH, respectively. After cells were loaded with Fluo 4-AM, the mean fluorescence intensity was lower in cells treated with ECH (100 µmol/L) than with NE. CONCLUSION: ECH suppresses NE-induced contraction of rat pulmonary artery via reducing intracellular Ca(2+) levels, and induces its relaxation through the NO-cGMP pathway and opening of K(+) channels (BKCa and KIR).


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Glicósidos/farmacología , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/agonistas , Óxido Nítrico/metabolismo , Arteria Pulmonar/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/enzimología , Norepinefrina/farmacología , Arteria Pulmonar/enzimología , Ratas Wistar , Vasoconstrictores/farmacología
9.
J Pharmacol Sci ; 126(2): 155-63, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25341567

RESUMEN

The main purpose of this study is to evaluate the effect of echinacoside (ECH) on hypoxia-induced proliferation of rat pulmonary artery smooth muscle cells (PASMCs) and the underlying mechanism. PASMCs were incubated under normoxia (nor), hypoxia (hyp), hypoxia + 0.35 mM ECH (hyp + ECH0.35), or hypoxia + 0.4 mM ECH (hyp + ECH0.4) for 24 h. Cell viability was assessed by MTS assays. The morphology of apoptosis was observed by DAPI staining, and apoptosis was quantified by flow cytometric analysis. Caspase-3 activity was determined by immunohistochemistry and real-time PCR, and the expressions of HIF-1α, Bax, Bcl-2, and Fas were determined by real-time PCR. Hypoxia induced significant proliferation of PASMCs, which could be inhibited by ECH in a concentration-dependent manner. This was associated with apoptosis of PASMCs. Z-DEVD-FMK could partly reduce the suppression effect of ECH; protein and gene expression of caspase-3 were significantly higher in the hyp + ECH0.4 and hyp + ECH0.35 groups. ECH significantly increased the expressions of Bax and Fas, but decreased the expressions of Bcl-2 and HIF-1α. ECH could inhibit hypoxia-induced proliferation of rat PASMCs, which is associated with apoptosis of PASMCs and improvement of hypoxia. ECH might be a potential agent for prevention and treatment of hypoxia-induced PAH.


Asunto(s)
Hipoxia de la Célula/fisiología , Proliferación Celular/efectos de los fármacos , Glicósidos/farmacología , Músculo Liso Vascular/citología , Arteria Pulmonar/citología , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Caspasa 3/metabolismo , Células Cultivadas , Depresión Química , Relación Dosis-Respuesta a Droga , Expresión Génica/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Músculo Liso Vascular/enzimología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Arteria Pulmonar/enzimología , Ratas Wistar , Remodelación Vascular/efectos de los fármacos , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Receptor fas/metabolismo
10.
Phytomedicine ; 132: 155840, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38941817

RESUMEN

BACKGROUND: Hypoxic pulmonary vascular remodeling (HPVR) is a key pathological feature of hypoxic pulmonary hypertension (HPH). Oxygen-sensitive potassium (K+) channels in pulmonary artery smooth muscle cells (PASMCs) play a crucial role in HPVR. Luteolin (Lut) is a plant-derived flavonoid compound with variety of pharmacological actions. Our previous study found Lut alleviated HPVR in HPH rat. PURPOSE: To elucidate the mechanism by which Lut mitigated HPVR, focusing on oxygen-sensitive voltage-dependent potassium channel 1.5 (Kv1.5). METHODS: HPH rat model was established using hypobaric chamber to simulate 5000 m altitude. Isolated perfused/ventilated rat lung, isolated pulmonary arteriole ring was utilized to investigate the impact of Lut on K+ channels activity. Kv1.5 level in lung tissue and pulmonary arteriole of HPH rat was assessed. CyclinD1, CDK4, PCNA, Bax, Bcl-2, cleaved caspase-3 levels in lung tissue of HPH rat were tested. The effect of Lut on Kv1.5, cytoplasmic free calcium concentration ([Ca2+]cyt), CyclinD1, CDK4, PCNA, Bax/Bcl-2 was examined in PASMCs under hypoxia, with DPO-1 as a Kv1.5 specific inhibitor. The binding affinity between Lut and Kv1.5 in PASMCs was detected by drug affinity responsive target stability (DARTS). The overexpression of KCNA5 gene (encoding Kv1.5) in HEK293T cells was utilized to confirm the interaction between Lut and Kv1.5. Furthermore, the impact of Lut on mitochondrial structure, SOD, GSH, GSH-Px, MDA and HIF-1α levels were evaluated in lung tissue of HPH rat and PASMCs under hypoxia. RESULTS: Lut dilated pulmonary artery by directly activating Kv and Ca2+-activated K+ channels (KCa) in smooth muscle. Kv1.5 level in lung tissue and pulmonary arteriole of HPH rat was upregulated by Lut. Lut downregulated CyclinD1, CDK4, PCNA while upregulating Bax/Bcl-2/caspase-3 axis in lung tissue of HPH rat. Lut decreased [Ca2+]cyt, reduced CDK4, CyclinD1, PCNA, increased Bax/Bcl-2 ratio, in PASMCs under hypoxia, by upregulating Kv1.5. The binding affinity and the interaction between Lut and Kv1.5 was verified in PASMCs and in HEK293T cells. Lut also decreased [Ca2+]cyt and inhibited proliferation via targeting Kv1.5 of HEK293T cells under hypoxia. Furthermore, Lut protected mitochondrial structure, increased SOD, GSH, GSH-Px, decreased MDA, in lung tissue of HPH rat. Lut downregulated HIF-1α level in both lung tissue of HPH rat and PASMCs under hypoxia. CONCLUSION: Lut alleviated HPVR by promoting vasodilation of pulmonary artery, reducing cellular proliferation, and inducing apoptosis through upregulating of Kv1.5 in PASMCs.

11.
J Tradit Chin Med ; 33(3): 355-60, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24024332

RESUMEN

OBJECTIVE: To investigate the underlying mechanism of reduced myocardial ischemia-reperfusion (I/R) injury in rats using the traditional Tibetan medicine Sanweitanxiang powder (SWTX). METHODS: Rats were randomly divided into six groups (n = 10) as follows: (a) propranolol dinitrate control group, given propranolol dinitrate 0.02 g/kg for 10 days before I/R, (b) SWTX with a high dose group, given SWTX 1.5 g/kg for 10 days before I/R, (c) SWTX with a medium dose group, given SWTX 1.25 g/kg for 10 days before I/R, (d) sham group (Sham), in which the rat heart was exposed by pericardiotomy but without I/R, (e) SWTX with a low dose group, given SWTX 1.0 g/kg for 10 days before I/R, and (f) I/R injury group. Rats were intragastrically pretreated with propranolol dinitrate or SWTX. After that, the operation to cause ischemia and reperfusion was conducted. The histopathologic changes of rat hearts were observed by hematoxylin and eosin staining and transmission electron microscopy. Ca2+ homeostasis protein expression was determined by western blot. RESULTS: After SWTX pretreatment, the development of ultrastructural pathological changes from IR injury was attenuated. A decrease in the expression of B-cell lymphoma 2 associated X protein, and an increase in the expression of B-cell lymphoma 2 were observed. An increased activation of extracellular signal regulated kinases were found. Compared with the sham group, the expression of sarcoplasmic reticulum calcium-ATPase, phospholamban, and calsequestrin were all up-regulated after pretreatment with SWTX. CONCLUSION: The protective mechanism of SWTX pretreatment on myocardial I/R injury might be related to its effect on maintaining the balance of calcium homeostasis in rat heart.


Asunto(s)
Calcio/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Quinasas MAP Reguladas por Señal Extracelular/genética , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Homeostasis , Humanos , Masculino , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Ratas Sprague-Dawley , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
12.
Expert Opin Ther Pat ; 32(3): 225-242, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34949146

RESUMEN

INTRODUCTION: Up to now, a total of eight Janus kinase (JAK) inhibitors have been approved for the treatment of autoimmune and myeloproliferative disease. The JAK family belongs to the non-receptor tyrosine kinase family, consisting of JAK1, JAK2, JAK3, and Tyk2. Among these four subtypes, only JAK3 is mainly expressed in hematopoietic tissue cells and is exclusively associated with the cytokines shared in the common gamma-chain receptor subunit. Due to its specific tissue distribution and functional characteristics that distinguish it from the other JAKs family subtypes, JAK3 is a promising target for the treatment of autoimmune disease. AREAS COVERED: This study aimed to provide a comprehensive review of the available patent literature on JAK-family inhibitors published from 2016 to the present. In addition, an overview of the clinical activities of selective JAK3 inhibitors in recent years was provided. EXPERT OPINION: To date, no selective JAK3 inhibitors have been approved for use in clinics. Over the last 5 years, an increasing number of studies on JAK3 inhibitors, particularly ritlecitinib by Pfizer, have demonstrated their promising therapeutic potential. In this review, recent studies reported that selective JAK3 inhibitors may offer valid, interesting, and promising therapeutic potential in inflammatory and autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Patentes como Asunto , Enfermedades Autoinmunes/tratamiento farmacológico , Humanos , Janus Quinasa 3 , Quinasas Janus , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , TYK2 Quinasa
13.
J Ethnopharmacol ; 297: 115572, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-35872290

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Srolo Bzhtang (SBT), which consists of Solms-laubachia eurycarpa, Bergenia purpurascens, Glycyrrhiza uralensis, and lac secreted by Laccifer lacca Kerr (Lacciferidae Cockerell), is a well-known traditional Tibetan medicinal formula and was documented to cure "lung-heat" syndrome by eliminating "chiba" in the ancient Tibetan medical work Four Medical Tantras (Rgyud bzhi). Clinically, it is a therapy for pulmonary inflammatory disorders, such as pneumonia, chronic bronchitis, and chronic obstructive pulmonary disease. However, whether and how SBT participates in pulmonary arterial hypertension (PAH) is still unclear. AIM OF THE STUDY: We aimed to determine the role of SBT in attenuating pulmonary arterial pressure and vascular remodeling caused by monocrotaline (MCT) and hypoxia. To elucidate the potential mechanism underlying SBT-mediated PAH, we investigated the changes in inflammatory cytokines and mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB) signaling pathway. MATERIALS AND METHODS: MCT- and hypoxia-induced PAH rat models were used. After administering SBT for four weeks, the rats were tested for hemodynamic indicators, hematological changes, pulmonary arterial morphological changes, and the levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in serum and lung tissues. Protein expression of the MAPK/NF-κB signaling pathway was determined using western blotting. RESULTS: SBT reduced pulmonary arterial pressure, vascular remodeling, and the levels of inflammatory cytokines induced by MCT and hypoxia in rats. Furthermore, SBT significantly suppressed the MAPK/NF-κB signaling pathway. CONCLUSIONS: To our knowledge, this is the first study to demonstrate that SBT alleviates MCT- and hypoxia-induced PAH in rats, which is related to its anti-inflammatory actions involving inhibition of the MAPK/NF-κB signaling pathway.


Asunto(s)
FN-kappa B , Hipertensión Arterial Pulmonar , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hipoxia/metabolismo , Inflamación , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Monocrotalina , FN-kappa B/metabolismo , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Necrosis Tumoral alfa , Remodelación Vascular
14.
Biomed Res Int ; 2022: 4803956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35425842

RESUMEN

Objective: This study was aimed at investigating the potential mechanism of Grubthobrildkr (GTB) on systemic hypoxia-induced gastric ulcers in rats and at detecting the chemical profile of GTB. Methods: Male Sprague-Dawley rats were separated into control, hypoxia, hypoxia+omeprazole, and hypoxia+GTBs (0.25, 0.5, and 1.0 g·kg-1·d-1) groups. Systemic hypoxia was created in a hypobaric chamber to simulate 5000 m high altitude by adjusting the inner pressure and oxygen content for 6 days. After that, the ulcer index, pH, and volume of gastric juice were assessed. The levels of endothelin-1 (ET-1), gastrin (GAS), motilin (MTL), phospholipase A2 (PLA2), and prostaglandin E2 (PGE2) were detected by ELISA. The expression level of hydrogen potassium ATPase (H+-K+-ATPase), cyclooxygenase-1 (COX-1), and cyclooxygenase-2 (COX-2) was tested by western blotting. Chemical profile of GTB was revealed by UHPLC-Q-exactive hybrid quadrupole-orbitrap mass (UHPLC-Q-Orbitrap MS). Results: GTB decreased the ulcer index in rats under hypoxia for six days, which was related to increased pH and volume of gastric juice, enhanced MTL and PGE2 levels, and decreased ET-1 and PLA2 levels of gastric mucosa. Furthermore, GTB decreased the level of H+-K+-ATPase and COX-2 while increased COX-1 levels in gastric mucosal tissue. 44 constituents were identified by UHPLC-Q-Orbitrap MS in GTB. Conclusion: GTB exerted a gastroprotective effect to alleviate gastric ulceration induced by acute systemic hypoxia in rats. The effect of GTB increasing the volume and pH of gastric juice in rats under acute systemic hypoxia could be regulated by gastrointestinal hormones, including MTL and ET-1. Mechanically, gastrointestinal protection of GTB was based on inhibition of the protons pumping H+-K+-ATPase and regulation of prostaglandin family in rats.


Asunto(s)
Úlcera Gástrica , Adenosina Trifosfatasas/metabolismo , Animales , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Mucosa Gástrica/metabolismo , Hipoxia/complicaciones , Hipoxia/metabolismo , Masculino , Medicina Tradicional Tibetana , Motilina , Ratas , Ratas Sprague-Dawley , Úlcera Gástrica/inducido químicamente , Úlcera
15.
Phytomedicine ; 104: 154329, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35843187

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a devastating disease with poor prognosis and high mortality. Hypoxia induced pulmonary hypertension (HPH) is a persistent threat to human health, especially to people who live on high altitude plateau. Pulmonary vascular endothelial cell is involved in numerous pathophysiological processes, including in vasoconstriction, oxidative stress, cell growth and differentiation. Endothelial cells (ECs) are the first layer to be exposed to changed oxygen levels and hypoxia could lead to ECs dysfunction. Endothelial-derived nitric oxide (NO) is the most important bioactive molecule, which could regulate endothelial homeostasis. PH pathophysiology has been linked to the disruption of NO pathways. PURPOSE: Luteolin is a kind of plant active ingredient with multiple pharmacological activities. The purpose of this study is to detect the effect of luteolin on HPH with in vivo, ex vivo and in vitro analyses and to further elucidate luteolin's pharmaceutical mechanism with NO related signaling pathway regulation. METHODS: Hypobaric chamber was used to establish HPH animal model. Rats were intragastrically administrated luteolin for 28 days. Then hemodynamic indexes, histopathological changes, pulmonary artery endothelial function, NO content and arginase activity in lung tissue, NO related pathway proteins expression were measured to evaluate the effect of luteolin on HPH. PAECs were treated with 1% O2 and incubated with or without luteolin. PAECs vitality, NO content in cells supernatant, and NO related pathway proteins expression were tested to reveal the protective mechanism of luteolin. RESULTS: Luteolin decreased mean pulmonary hypertension of HPH rats, alleviated right ventricular and pulmonary vascular remodeling. Immunofluorescence staining (vWF), isolated perfused/ventilated rat lung experiment indicated that luteolin protected pulmonary vascular endothelial function of HPH rats. Luteolin increased NO content in PAECs supernatant while decreased NO level in lung tissues of HPH rats. Further, it was demonstrated that luteolin inhibited HIF-2α-Arg axis in PAECs and HPH rats. PI3K-AKT-eNOS signaling pathway was upregulated in PAECs, but which was downregulated in lung tissues of HPH rats. Pharmacological effect of luteolin was equivalent or better than sildenafil. CONCLUSION: Luteolin ameliorated HPH in rats by protecting pulmonary vascular endothelial function via regulating HIF-2α-Arg-NO axis and PI3K-AKT-eNOS-NO signaling pathway. This study may provide a novel perspective and approach to alleviate the devastating disease of HPH.


Asunto(s)
Hipertensión Pulmonar , Animales , Arginasa , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Endoteliales/metabolismo , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/etiología , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Luteolina/farmacología , Luteolina/uso terapéutico , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III , Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Arteria Pulmonar , Ratas
16.
J Ethnopharmacol ; 283: 114734, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34648900

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Previous studies have shown that the active fraction of Rhodiola tangutica (Maxim.) S.H. Fu (ACRT) dilates pulmonary arteries and thwarts pulmonary artery remodelling. The dilatation effect of ACRT on pulmonary artery vascular rings could be reduced by potassium (K+) channel blockers. However the exact mechanisms of ACRT on ion channels are still unclear. AIM OF THE STUDY: This study aimed to investigate whether the effect of ACRT on K+ channels inhibits cell proliferation after pulmonary artery smooth muscle cells (PASMCs) are exposed to hypoxia. MATERIALS AND METHODS: The whole-cell patch-clamp method was used to clarify the effect of ACRT on the K+ current (IK) of rat PASMCs exposed to hypoxia. The mRNA and protein expression levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. The intracellular calcium (Ca2+) concentration ([Ca2+]i) values in rat PASMCs were detected by laser scanning confocal microscopy. The cell cycle and cell proliferation were assessed using flow cytometry analysis and CCK-8 and EdU assays. RESULTS: ACRT pretreatment alleviated the inhibition of IK induced by hypoxia in rat PASMCs. Compared with hypoxia, ACRT upregulated voltage-dependent K+ channel (Kv) 1.5 and big-conductance calcium-activated K+ channel (BKCa) mRNA and protein expression and downregulated voltage-dependent Ca2+ channel (Cav) 1.2 mRNA and protein expression. ACRT decreased [Ca2+]i, inhibited the promotion of cyclin D1 and proliferating cell nuclear antigen (PCNA) expression, and prevented the proliferation of rat PASMCs exposed to hypoxia. CONCLUSION: In conclusion, the present study demonstrated that ACRT plays a key role in restoring ion channel function and then inhibiting the proliferation of PASMCs under hypoxia, ACRT has preventive and therapeutic potential in hypoxic pulmonary hypertension.


Asunto(s)
Músculo Liso Vascular/efectos de los fármacos , Extractos Vegetales/farmacología , Arteria Pulmonar/efectos de los fármacos , Rhodiola/química , Animales , Calcio/metabolismo , Hipoxia de la Célula , Proliferación Celular/efectos de los fármacos , Hipertensión Pulmonar/tratamiento farmacológico , Masculino , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Arteria Pulmonar/citología , Ratas , Ratas Sprague-Dawley
17.
Biomed Res Int ; 2022: 9650650, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110120

RESUMEN

Materials and Methods: Seventy-five male Sprague-Dawley (SD) rats were separated into control (Ctr), hypoxia (Hyp), and Hyp+VORA treatment (100 mg/kg/d, 80 mg/kg/d, and 40 mg/kg/d) groups in random. To achieve the chronic hypoxia condition, rats were kept inside the hypobaric chamber with automatically adjusted inner pressure as well as oxygen content equal to those of 4500 m in altitude for 4 continuous weeks. After 4 weeks, the rats' physiological parameters were determined (mean pulmonary artery pressure (mPAP); right ventricular hypertrophy index (RVHI)). Based on hematoxylin and eosin (HE) staining and transmission electron microscope (TEM), morphological features of their lung tissues were also analyzed. Proliferation of pulmonary arterial smooth muscle cells (PASMCs) was detected by MTS Cell Proliferation Colorimetric assay. The levels of glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) in PASMCs were detected through corresponding kits, respectively. The protein levels in PASMCs and HPH rats were evaluated by Western blot (WB). Chemical components of VORA were detected through gas chromatography-mass spectrometer (GC-MS). Results: After induced by hypoxia for 4 weeks, the mPAP and RVHI levels were increased significantly in hypoxia group in contrast to the Ctr group, indicating the establishment of HPH rat model. The subsequent administration of VORA decreased the mPAP and RVHI level. The vascular wall thickness and lumen size were also decreased after treated by VORA compared with Hyp group. Meanwhile, VORA suppressed the proliferation and oxidant stress in PASMCs. Therefore, the effect of VORA on decreasing vascular wall thickening and lumen size could be related to its antiproliferation effect on PASMCs. In addition, compared to the Hyp group, VORA downregulated the ACE, AngII, and AT1R protein expressions but increased ACE2 and MAS protein expressions (P < 0.05). A total of 48 constituents in VORA were identified by GC-MS in comparison with reference standards as well as the reference pieces of literatures. Conclusions: HPH rat model as established based on the significant increased mPAP and RVHI. VORA presented a significant antihypoxia function plus an inhibiting effect on PASMC proliferation induced by hypoxia. Moreover, VORA treatment inhibited oxidative stress among PASMCs. With regard to the mechanism, VORA reduced ACE, AngII, and AT1R protein expressions but increased ACE2 and MAS protein expressions. There were 48 constituents in VORA identified by GC-MS.


Asunto(s)
Hipertensión Pulmonar , Aceites Volátiles , Rhodiola , Enzima Convertidora de Angiotensina 2 , Animales , Eosina Amarillenta-(YS) , Glutatión , Hematoxilina , Hipertrofia Ventricular Derecha , Hipoxia/metabolismo , Masculino , Malondialdehído , Oxidantes , Oxígeno , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa
18.
Biomed Res Int ; 2020: 3409679, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32596298

RESUMEN

Inadequate oxygen availability at high altitude leads to oxidative stress, resulting in hippocampal neurodegeneration and memory impairment. In our previous study, we found that the cognitive dysfunction occurred when male SD rat was rapidly exposed to 4200 m of high altitude for 3 days. And we also found that crocin showed a cognitive protective effect under hypoxia by regulating SIRT1/PGC-1α pathways in rat's hippocampus. In this article, focused on factors related to SIRT1/PGC-1α pathways, we proposed to further elucidate crocin's pharmacological mechanism. Adult male Sprague-Dawley rats were randomly divided into five groups: control group, hypoxia group (rats were rapidly transported to high altitude of 4200 m for 72 h), and crocins+hypoxia groups (pretreatment with crocin of 25, 50, and 100 mg/kg/d for 3 days). The learning and memory ability was tested by Morris water maze analysis. Hippocampal histopathological changes were observed by HE staining and Nissl staining. The expression of NRF1, TFAM, Bcl-2, Bax, and caspase-3 was detected by immunohistochemistry, RT-PCR, and western blotting test. The contents of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSHPx) were detected by the TBA, WST, and colorimetry method. Neuronal apoptosis was observed by TUNEL staining. After crocin pretreatment, the traveled distance was significantly reduced and the percentage of time in the target quadrant was significantly increased tested by Morris water maze. And neuronal damage in the hippocampus was also significantly ameliorated based on HE staining and Nissl staining. Furthermore, in hippocampus tissue, mitochondrial biosynthesis-related factors of NRF1, TFAM expression was increased; oxidative stress factors of SOD, GSH, and GSHPx expression level were increased, and MDA and glutathione disulfide (GSSG) level were decreased; antiapoptotic protein Bcl-2 expression was increased, and proapoptotic proteins Bax and caspase-3 expression were decreased, with a manner of crocin dose dependent. Therefore, the cognitive protective mechanism of crocin in rat under acute hypoxia was related to promoting mitochondrial biosynthesis, ameliorating oxidative stress injury, and decreasing neuronal apoptosis.


Asunto(s)
Mal de Altura/metabolismo , Carotenoides/farmacología , Hipocampo , Fármacos Neuroprotectores/farmacología , Animales , Hipocampo/química , Hipocampo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas , Ratas Sprague-Dawley , Sirtuina 1/metabolismo
19.
Front Pharmacol ; 11: 607384, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33536917

RESUMEN

Background: Tsantan Sumtang originated from Four Tantras, which consisted of Choerospondias axillaris (Roxb.) B. L. Burtt and A. W. Hill, Santalum album L., and Myristica fragrans Houtt. The three herbs are in ratio 1:1:1. This medication is widely used for cardiovascular diseases. Aims: The purpose of this study was to explore the effect of Tsantan Sumtang on right ventricular (RV) function in hypoxia-induced pulmonary hypertension (HPH) rats and investigate the underlying mechanism. Methods: Sixty male Sprague-Dawley (SD) rats were divided into control, hypoxia, and hypoxia + Tsantan Sumtang (1.0, 1.25, and 1.5 g•kg-1•d-1) groups. Chronic hypoxia was induced by putting the rats inside a hypobaric chamber for four weeks and adjusting the inner pressure and oxygen content to match an altitude of 4500 m. Echocardiography was used to assess RV function and right ventricular-pulmonary arterial (RV-PA) coupling. The physiological parameters of the animals were also evaluated. Morphological characteristics of RV were assessed by hematoxylin and eosin (H&E) staining and TEM. Masson's trichrome staining, immunohistochemical staining, western blotting, and TUNEL assay were used to assess fibrosis and apoptosis levels. The antioxidant and anti-apoptosis properties of Tsantan Sumtang were also evaluated. The effect of Tsantan Sumtang on ROCK signaling pathway was evaluated using real-time quantitative PCR and western blotting. Results: We established an HPH rat model as indicated by the significant increases in the physiological parameters of the rats. Tsantan Sumtang showed a significant cardiac-protective function and an improved effect on RV-PA coupling. Moreover, Tsantan Sumtang treatment inhibited fibrosis and alleviated apoptosis and oxidative stress in RV. In terms of mechanism, Tsantan Sumtang reduced the expression of ROCK (ROCK1, ROCK2) in RV, inhibited cardiac remodeling-related transcription factors (NFATc3, P-STAT3), and regulated apoptosis-related proteins. Conclusion: Tsantan Sumtang was able to restore RV function, improve RV-PA coupling, recover hemodynamic and hematological indexes, and protect RV against structural maladaptive remodeling in the HPH rats. These findings demonstrated that Tsantan Sumtang protects the function of RV in HPH rats. The antioxidant and anti-apoptosis properties of Tsantan Sumtang may be responsible for inhibiting the ROCK signaling pathway.

20.
J Ethnopharmacol ; 250: 112470, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-31862407

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tsantan Sumtang, which consists of Choerospondias axillaris (Roxb.) Burtt et Hill, Myristica fragrans Houtt and Santalum album L, is a traditional and common prescription of Tibetan medicine. Tsantan Sumtang originates from Four Tantra with properties of nourishing heart and has been used as a folk medicine for cardiovascular diseases and heart failure in Qinghai, Tibet and Inner Mongolia. Our previous studies found that Tsantan Sumtang showed beneficial effects on right ventricular structure in hypoxia rats, while the underling mechanism remains unclear. AIM OF THE STUDY: To elucidate the underlying mechanisms of Tsantan Sumtang attenuated right ventricular (RV) remodeling and fibrosis of chronic hypoxia-induced pulmonary arterial hypertension (HPAH) rats. MATERIALS AND METHODS: Fifty male Sprague Dawley (SD) rats (170 ± 20 g) were randomly divided into control group, hypoxia group, and hypoxia + Tsantan Sumtang groups (1.0 g·â€¯kg-1·day-1, 1.25 g·â€¯kg-1·day-1, 1.5 g ·kg-1·day-1). Rats in the hypoxia group and hypoxia + Tsantan Sumtang groups were maintained in a hypobaric chamber by adjusting the inner pressure and oxygen content to simulate an altitude of 4500 m for 28 days. The mean pulmonary arterial pressure (mPAP), right ventricle hypertrophy index (RVHI), the ratio of RV weight to tibia length (TL) (RV/TL), heart rate (HR) and RV systolic pressure (RVSP) was determined. Histomorphological assay of RV structure was evaluated by hematoxylin and eosin (HE) staining. RV tissue fibrosis was assessed by collagen proportion area (CPA), collagen I, collagen III and hydroxyproline content. CPA was obtained by picro-sirius red staining (PSR). The expression of collagen I and collagen III were detected by immunohistochemistry and western blotting. The hydroxyproline content was detected by alkaline hydrolysis. In addition, the level of angiotensin II (AngII) and angiotensin 1-7 (Ang1-7) in RV tissue was tested by enzyme-linked immune sorbent assay (ELISA). Protein expression of angiotensin-converting enzyme (ACE), AngII, AngII type 1 receptor (AT1R), angiotensin-converting enzyme 2 (ACE2), Mas receptor (Mas) were determined by immunohistochemistry and western blotting. mRNA level of ACE, AT1R, ACE2, Mas were tested by qPCR. The chemical profile of Tsantan Sumtang was revealed by UHPLC-Q-Exactive hybrid quadrupole-orbitrap mass analysis. RESULTS: Our results showed that RVHI, RV/TL and RVSP were significantly increased in HPAH rat. Furthermore, levels of collagen I, collagen III and hydroxyproline were up-regulated in RV tissue under hypoxia. We found that RV hypertrophy and fibrosis were associated with increased expression of ACE, AngII, AT1R as well as decreased expression of ACE2, Ang1-7 and Mas. RV remodeling and fibrosis were attenuated after Tsantan Sumtang administration by up-regulating ACE2 and Mas level as well as down-regulating ACE, AngII and AT1R levels in RV tissue. 35 constituents in Tsantan Sumtang were identified. CONCLUSION: Tsantan Sumtang attenuated RV remodeling and fibrosis in rat exposed to chronic hypoxia. The pharmacological effect of Tsantan Sumtang was based on equilibrating ACE-AngII-AT1R and ACE2-Ang1-7-Mas axis of RV tissue in HPAH rat.


Asunto(s)
Hipertrofia Ventricular Derecha/tratamiento farmacológico , Medicina Tradicional Tibetana/métodos , Preparaciones de Plantas/farmacología , Remodelación Ventricular/efectos de los fármacos , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fibrosis/tratamiento farmacológico , Hipoxia/complicaciones , Hipoxia/metabolismo , Masculino , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Preparaciones de Plantas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA