Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Environ Sci Technol ; 58(20): 8815-8824, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38733566

RESUMEN

This study presents the measurement of photochemical precursors during the lockdown period from January 23, 2020, to March 14, 2020, in Chengdu in response to the coronavirus (COVID-19) pandemic. To derive the lockdown impact on air quality, the observations are compared to the equivalent periods in the last 2 years. An observation-based model is used to investigate the atmospheric oxidation capacity change during lockdown. OH, HO2, and RO2 concentrations are simulated, which are elevated by 42, 220, and 277%, respectively, during the lockdown period, mainly due to the reduction in nitrogen oxides (NOx). However, the radical turnover rates, i.e., OH oxidation rate L(OH) and local ozone production rate P(O3), which determine the secondary intermediates formation and O3 formation, only increase by 24 and 48%, respectively. Therefore, the oxidation capacity increases slightly during lockdown, which is partly attributed to unchanged alkene concentrations. During the lockdown, alkene ozonolysis seems to be a significant radical primary source due to the elevated O3 concentrations. This unique data set during the lockdown period highlights the importance of controlling alkene emission to mitigate secondary pollution formation in Chengdu and may also be applicable in other regions of China given an expected NOx reduction due to the rapid transformation to electrified fleets in the future.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Oxidación-Reducción , Ozono , China , Atmósfera/química , Óxidos de Nitrógeno/análisis , Monitoreo del Ambiente , SARS-CoV-2 , Humanos
2.
Environ Sci Technol ; 58(9): 4247-4256, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373403

RESUMEN

Nitrous acid (HONO) is an important source of hydroxyl radicals (OH) in the atmosphere. Precise determination of the absolute ultraviolet (UV) absorption cross section of gaseous HONO lays the basis for the accurate measurement of its concentration by optical methods and the estimation of HONO loss rate through photolysis. In this study, we performed a series of laboratory and field intercomparison experiments for HONO measurement between striping coil-liquid waveguide capillary cell (SC-LWCC) photometry and incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Specified HONO concentrations prepared by an ultrapure standard HONO source were utilized for laboratory intercomparisons. Results show a consistent ∼22% negative bias in measurements of the IBBCEAS compared with a SC-LWCC photometer. It is confirmed that the discrepancies occurring between these techniques are associated with the overestimation of the absolute UV absorption cross sections through careful analysis of possible uncertainties. We quantified the absorption cross section of gaseous HONO (360-390 nm) utilizing a custom-built IBBCEAS instrument, and the results were found to be 22-34% lower than the previously published absorption cross sections widely used in HONO concentration retrieval and atmospheric chemical transport models (CTMs). This suggests that the HONO concentrations retrieved by optical methods based on absolute absorption cross sections may have been underestimated by over 20%. Plus, the daytime loss rate and unidentified sources of HONO may also have evidently been overestimated in pre-existing studies. In summary, our findings underscore the significance of revisiting the absolute absorption cross section of HONO and the re-evaluation of the previously reported HONO budgets.


Asunto(s)
Contaminantes Atmosféricos , Ácido Nitroso , Ácido Nitroso/análisis , Gases/análisis , Contaminantes Atmosféricos/análisis , Análisis Espectral , Fotólisis
3.
Environ Sci Technol ; 58(21): 9227-9235, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38751196

RESUMEN

Severe ozone (O3) pollution has been a major air quality issue and affects environmental sustainability in China. Conventional mitigation strategies focusing on reducing volatile organic compounds and nitrogen oxides (NOx) remain complex and challenging. Here, through field flux measurements and laboratory simulations, we observe substantial nitrous acid (HONO) emissions (FHONO) enhanced by nitrogen fertilizer application at an agricultural site. The observed FHONO significantly improves model performance in predicting atmospheric HONO and leads to regional O3 increases by 37%. We also demonstrate the significant potential of nitrification inhibitors in reducing emissions of reactive nitrogen, including HONO and NOx, by as much as 90%, as well as greenhouse gases like nitrous oxide by up to 60%. Our findings introduce a feasible concept for mitigating O3 pollution: reducing soil HONO emissions. Hence, this study has important implications for policy decisions related to the control of O3 pollution and climate change.


Asunto(s)
Ácido Nitroso , Ozono , Suelo , Ácido Nitroso/química , Suelo/química , Contaminación del Aire/prevención & control , Contaminantes Atmosféricos , China , Cambio Climático , Óxido Nitroso
4.
J Environ Sci (China) ; 141: 215-224, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38408822

RESUMEN

The complex air pollution driven by both Ozone (O3) and fine particulate matter (PM2.5) significantly influences the air quality in the Sichuan Basin (SCB). Understanding the O3 formation during autumn and winter is necessary to understand the atmospheric oxidative capacity. Therefore, continuous in-site field observations were carried out during the late summer, early autumn and winter of 2020 in a rural area of Chongqing. The total volatile organic compounds (VOCs) concentration reported by a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) were 13.66 ± 9.75 ppb, 5.50 ± 2.64 ppb, and 9.41 ± 5.11 ppb in late summer, early autumn and winter, respectively. The anthropogenic VOCs (AVOCs) and biogenic VOCs (BVOCs) were 8.48 ± 7.92 ppb and 5.18 ± 2.99 ppb in late summer, 3.31 ± 1.89 ppb and 2.19 ± 0.93 ppb in autumn, and 6.22 ± 3.99 ppb and 3.20 ± 1.27 ppb in winter. A zero-dimensional atmospheric box model was employed to investigate the sensitivity of O3-precursors by relative incremental reactivity (RIR). The RIR values of AVOCs, BVOCs, carbon monoxide (CO), and nitrogen oxides (NOx) were 0.31, 0.71, 0.09, and -0.36 for late summer, 0.24, 0.59, 0.22, and -0.38 for early autumn, and 0.30, 0.64, 0.33 and -0.70 for winter, and the results showed that the O3 formation of sampling area was in the VOC-limited region, and O3 was most sensitive to BVOCs (with highest RIR values, > 0.6). This study can be helpful in understanding O3 formation and interpreting the secondary formation of aerosols in the winter.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Ozono/química , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , China , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos
5.
Environ Sci Technol ; 57(43): 16489-16499, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37844299

RESUMEN

We analyzed two data sets of atmospheric formaldehyde (FA) at an urban site in the Shanghai megacity during the summer of 2017 and the winter of 2017/18, with the primary objective of determining the emission ratio of formaldehyde versus carbon monoxide (CO). Through the photochemical age method and the minimum R squared (MRS) method, we derived the summer urban formaldehyde release ratios of 3.37 ppbv (ppmv of CO)-1 and 4.04 ppbv (ppmv of CO)-1, respectively. The error of both estimations is within ±20%, indicating the consistency of the results. We recognized the hourly minimum emission ratios determined from the MRS method to be indicative of actual formaldehyde emission ratios. Similarly, the emission ratio in winter is determined to be 2.10 ppbv (ppmv of CO)-1 utilizing the MRS method. The findings provide significant insights into the potential impact of motor vehicle exhaust on formaldehyde emissions in urban areas. This work demonstrates that the formaldehyde emission ratio determined by the MRS method can be used to represent the emissions of the freshest air mass. Formaldehyde photolysis contributed an average of 9% to the free radical primary reaction rate (P(ROx)) as a single chemical species during the daytime in summer, which was lower than the 11% recorded in winter. Formaldehyde emission reduction positively impacts local ozone production, so models describing ozone formation in Shanghai during summer need to reflect these emissions accurately. Evidence of the crucial catalytic role of formaldehyde in particulate matter formation has been confirmed by recent research. A potentially effective way to decrease the incidence of haze days in autumn and winter in the future is therefore to focus on reducing formaldehyde emissions.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , China , Emisiones de Vehículos/análisis , Formaldehído/análisis , Ozono/análisis
6.
Adv Atmos Sci ; : 1-23, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37359906

RESUMEN

Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the "air pollution complex" was first proposed by Professor Xiaoyan TANG in 1997. For papers published in 2021 on air pollution (only papers included in the Web of Science Core Collection database were considered), more than 24 000 papers were authored or co-authored by scientists working in China. In this paper, we review a limited number of representative and significant studies on atmospheric chemistry in China in the last few years, including studies on (1) sources and emission inventories, (2) atmospheric chemical processes, (3) interactions of air pollution with meteorology, weather and climate, (4) interactions between the biosphere and atmosphere, and (5) data assimilation. The intention was not to provide a complete review of all progress made in the last few years, but rather to serve as a starting point for learning more about atmospheric chemistry research in China. The advances reviewed in this paper have enabled a theoretical framework for the air pollution complex to be established, provided robust scientific support to highly successful air pollution control policies in China, and created great opportunities in education, training, and career development for many graduate students and young scientists. This paper further highlights that developing and low-income countries that are heavily affected by air pollution can benefit from these research advances, whilst at the same time acknowledging that many challenges and opportunities still remain in atmospheric chemistry research in China, to hopefully be addressed over the next few decades.

7.
J Environ Sci (China) ; 123: 327-340, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36521996

RESUMEN

A compilation of new advances made in the research field of laboratory reaction kinetics in China's Key Development Project for Air Pollution Formation Mechanism and Control Technologies was presented. These advances are grouped into six broad, interrelated categories, including volatile organic compound (VOC) oxidation, secondary organic aerosol (SOA) formation, new particle formation (NPF) and gas-particle partitioning, ozone chemistry, model parameters, and secondary inorganic aerosol (SIA) formation, highlighting the laboratory work done by Chinese researchers. For smog chamber applications, the current knowledge gained from laboratory studies is reviewed, with emphasis on summarizing the oxidation mechanisms of long-chain alkanes, aromatics, alkenes, aldehydes/ketones in the atmosphere, SOA formation from anthropogenic emission sources, and oxidation of aromatics, isoprene, and limonene, as well as SIA formation. For flow tube applications, atmospheric oxidation mechanisms of toluene and methacrolein, SOA formation from limonene oxidation by ozone, gas-particle partitioning of peroxides, and sulfuric acid-water (H2SO4-H2O) binary nucleation, methanesulfonic acid-water (MSA-H2O) binary nucleation, and sulfuric acid-ammonia-water (H2SO4-NH3-H2O) ternary nucleation are discussed.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Cinética , Limoneno , Aerosoles/análisis , Ozono/química , Contaminación del Aire/prevención & control , Agua , China , Contaminantes Atmosféricos/análisis
8.
J Environ Sci (China) ; 123: 487-499, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36522008

RESUMEN

Peroxy radicals (RO2), which are formed during the oxidation of volatile organic compounds, play an important role in atmospheric oxidation reactions. Therefore, the measurement of RO2, especially distinct species of RO2 radicals, is important and greatly helps the exploration of atmospheric chemistry mechanisms. Although the speciated detection of RO2 radicals remains challenging, various methods have been developed to study them in detail. These methods can be divided into spectroscopy and mass spectrometry technologies. The spectroscopy methods contain laser-induced fluorescence (LIF), UV-absorption spectroscopy, cavity ring-down spectroscopy (CRDS) and matrix isolation and electron spin resonance (MIESR). The mass spectrometry methods contain chemical ionization atmospheric pressure interface time-of-flight mass spectrometry (CI-APi-TOF), chemical ionization mass spectrometry (CIMS), CI-Orbitrap-MS and the third-generation proton transfer reaction-time-of-flight mass spectrometer (PTR3). This article reviews technologies for the speciated detection of RO2 radicals and the applications of these methods. In addition, a comparison of these techniques and the reaction mechanisms of some key species are discussed. Finally, possible gaps are proposed that could be filled by future research into speciated RO2 radicals.


Asunto(s)
Presión Atmosférica , Compuestos Orgánicos Volátiles , Espectrometría de Masas , Análisis Espectral
9.
J Environ Sci (China) ; 123: 387-399, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36522000

RESUMEN

Sulfate aerosol contributes to particulate matter pollution and plays a key role in aerosol radiative forcing, impacting human health and climate change. Atmospheric models tend to substantially underestimate sulfate concentrations during haze episodes, indicating that there are still missing mechanisms not considered by the models. Despite recent good progress in understanding the missing sulfate sources, knowledge on different sulfate formation pathways during polluted periods still involves large uncertainties and the dominant mechanism is under heated debate, calling for more field, laboratory, and modeling work. Here, we review the traditional sulfate formation mechanisms in cloud water and also discuss the potential factors affecting multiphase S(Ⅳ) oxidation. Then recent progress in multiphase S(Ⅳ) oxidation mechanisms is summarized. Sulfate formation rates by different prevailing oxidation pathways under typical winter-haze conditions are also calculated and compared. Based on the literature reviewed, we put forward control of the atmospheric oxidation capacity as a means to abate sulfate aerosol pollution. Finally, we conclude with a concise set of research priorities for improving our understanding of sulfate formation mechanisms during polluted periods.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Contaminantes Atmosféricos/análisis , Sulfatos/análisis , Monitoreo del Ambiente , Aerosoles/análisis , Material Particulado/análisis , Óxidos de Azufre , China
10.
J Environ Sci (China) ; 123: 476-486, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36522007

RESUMEN

Over the past decade, fine particulate matter (PM) pollution in China has been abated significantly, benefiting from strict emission control measures, but particulate nitrate continues to rise. Here, we review the progress in particulate nitrate (pNO3-) pollution characterization, nitrate formation mechanisms, and the proposed control strategies in China. The spatial and temporal distributions of pNO3- are summarized. The current status of knowledge on the chemical mechanism is updated, and the significance of its formation pathways is assessed by various approaches such as field observation and modelling of nitrate production rate, as well as isotopic analysis. The factors impacting pNO3- formation and the corresponding pollution regulation strategies are discussed, in which the importance of atmospheric oxidation capacity and ammonia are addressed. Finally, the challenges and open questions in pNO3- pollution control in China are outlined.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Nitratos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Polvo/análisis , China , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis , Estaciones del Año
11.
J Environ Sci (China) ; 123: 522-534, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36522011

RESUMEN

The atmospheric chemical mechanism is an essential component of airshed models used for investigating the chemical behaviors and impacts of species. Since the first tropospheric chemical mechanism was proposed in the 1960s, various mechanisms including Master Chemical Mechanism (MCM), Carbon Bond Mechanism (CBM), Statewide Air Pollution Research Center (SAPRC) and Regional Atmospheric Chemistry Mechanism (RACM) have been developed for different research purposes. This work summarizes the development and applications of these mechanisms, introduces their compositions and lumping methods, and compares the ways the mechanisms treat radicals with box model simulations. CBM can reproduce urban pollution events with relatively low cost compared to SAPRC and RACM, whereas the chemical behaviors of radicals and the photochemical production of ozone are described in detail in RACM. The photolysis rates of some oxygenated compounds are low in SAPRC07, which may result in underestimation of radical levels. As an explicit chemical mechanism, MCM describes the chemical processes of primary pollutants and their oxidation products in detail. MCM can be used to investigate certain chemical processes; however, due to its large size, it is rarely used in regional model simulations. A box model case study showed that the chemical behavior of OH and HO2 radicals and the production of ozone were well described by all mechanisms. CBM and SAPRC underestimated the radical levels for different chemical treatments, leading to low ozone production values in both cases. MCM and RACM are widely used in box model studies, while CBM and SAPRC are often selected in regional simulations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ozono/química
12.
J Environ Sci (China) ; 123: 140-155, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36521979

RESUMEN

China has put great efforts into air pollution control over the past years and recently committed to its most ambitious climate target. Cost and benefit analysis has been widely used to evaluate the control policies in terms of past performance, future reduction potential, and direct and indirect impacts. To understand the cost and benefit analysis for air pollution control in China, we conducted a bibliometric review of more than 100 studies published over the past two decades, including the current research progress, most commonly adopted methods, and core findings. The control target in cost and benefit analysis has shifted in three stages, from individual and primary pollution control, moving to joint prevention of multiple and secondary pollutants, and then towards synergistic control of air pollution and carbon. With the expansion of the research scope, the integrated assessment model has gradually demonstrated the necessity for long-term ex-anti policy simulation, especially for dealing with complex factors. To ensure long-term air quality, climate, public health, and sustainable economic development, substantial evidence from published studies has suggested that China needs to continue its efforts in the upstream adjustment of the energy system and industrial structure with multi-regional and -sector collaboration. This cost and benefit review paper provides decision-makers with the fundamental information and knowledge gaps in air pollution control strategies in China, and direction for facing future challenges.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Análisis Costo-Beneficio , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis , China , Políticas
13.
J Environ Sci (China) ; 123: 350-366, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36521998

RESUMEN

Atmospheric oxidizing capacity (AOC) is an essential driving force of troposphere chemistry and self-cleaning, but the definition of AOC and its quantitative representation remain uncertain. Driven by national demand for air pollution control in recent years, Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research. This paper will give a brief review of these developments. First, AOC indexes were established that represent apparent atmospheric oxidizing ability (AOIe) and potential atmospheric oxidizing ability (AOIp) based on aspects of macrothermodynamics and microdynamics, respectively. A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing, and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country. In addition, the detection of ground or vertical profiles for atmospheric OH·, HO2·, NO3· radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments. Moreover, laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O3 and NO2, which are typical oxidants in the surface/interface atmosphere, and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies, multiphase and multi-interface conditions were obtained. Finally, based on the GRAPES-CUACE adjoint model improved by Chinese scholars, simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized. Normalized numerical simulations of AOIe and AOIp were performed, and regional coordination of AOC was adjusted. An optimized plan for controlling O3 and PM2.5 was analyzed by scenario simulation.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminación del Aire/análisis , Atmósfera/química , Aerosoles/análisis , Oxidación-Reducción , Oxidantes , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , China , Monitoreo del Ambiente
14.
Environ Sci Technol ; 56(24): 17569-17580, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36473087

RESUMEN

Tropospheric ozone (O3) is a harmful gas compound to humans and vegetation, and it also serves as a climate change forcer. O3 is formed in the reactions of nitrogen oxides and volatile organic compounds (VOCs) with light. In this study, an O3 pollution episode encountered in Shenzhen, South China in 2018 was investigated to illustrate the influence of aerosols on local O3 production. We used a box model with comprehensive heterogeneous mechanisms and empirical prediction of photolysis rates to reproduce the O3 episode. Results demonstrate that the aerosol light extinction and NO2 heterogeneous reactions showed comparable influence but opposite signs on the O3 production. Hence, the influence of aerosols from different processes is largely counteracted. Sensitivity tests suggest that O3 production increases with further reduction in aerosols in this study, while the continued NOx reduction finally shifts O3 production to an NOx-limited regime with respect to traditional O3-NOx-VOC sensitivity. Our results shed light on the role of NOx reduction on O3 production and highlight further mitigation in NOx not only limiting the production of O3 but also helping to ease particulate nitrate, as a path for cocontrol of O3 and fine particle pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Humanos , Contaminantes Atmosféricos/análisis , Ozono/análisis , China , Compuestos Orgánicos Volátiles/análisis , Aerosoles/análisis , Monitoreo del Ambiente
15.
Environ Sci Technol ; 55(21): 14556-14566, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34658233

RESUMEN

Nitrogen lost from fertilized soil is a potentially large source of atmospheric nitrous acid (HONO), a major precursor of the hydroxyl radical. Yet, the impacts of fertilizer types and other influencing factors on HONO emissions are unknown. As a result, the current state-of-the-art models lack an appropriate parameterization scheme to quantify the HONO impact on air quality after fertilization. Here, we report laboratory measurements of high HONO emissions from soils at a 75-95% water-holding capacity after applying three common fertilizers, which contrasts with previous lower predictions at high soil moisture. Urea use leads to the largest release of HONO compared to the other two commonly used fertilizers (ammonium bicarbonate and ammonium nitrate). The significant promotion effect of fertilization lasted up to 1 week. Implementation of the lab-derived parametrization in a chemistry transport model (CMAQ) significantly improved postfertilization HONO predictions at a rural site in the agriculture-intensive North China Plain and increased the regionally averaged daytime OH, O3, and daily fine particulate nitrate concentrations by 41, 8, and 47%, respectively. The results of our study underscore the necessity to include this large postfertilization HONO source in modeling air quality and atmospheric chemistry. Fertilizer structure adjustments may reduce HONO emissions and improve the air quality in polluted regions with intense agriculture.


Asunto(s)
Contaminación del Aire , Ácido Nitroso , Agricultura , Fertilización , Fertilizantes , Ácido Nitroso/análisis , Óxido Nitroso/análisis , Suelo
16.
Environ Sci Technol ; 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34319085

RESUMEN

Ozone (O3) pollution has a negative effect on the public health and crop yields. Accurate diagnosis of O3 production sensitivity and targeted reduction of O3 precursors [i.e., nitrogen oxides (NOx) or volatile organic compounds (VOCs)] are effective for mitigating O3 pollution. This study assesses the indicative roles of the surface formaldehyde-to-NO2 ratio (FNR) and glyoxal-to-NO2 ratio (GNR) on surface O3-NOx-VOC sensitivity based on a meta-analysis consisting of multiple field observations and model simulations. Thresholds of the FNR and GNR are determined using the relationship between the relative change of the O3 production rate and the two indicators, which are 0.55 ± 0.16 and 1.0 ± 0.3 for the FNR and 0.009 ± 0.003 and 0.024 ± 0.007 for the GNR. The sensitivity analysis indicated that the surface FNR is likely to be affected by formaldehyde primary sources under certain conditions, whereas the GNR might not be. As glyoxal measurements are becoming increasingly available, using the FNR and GNR together as O3 sensitivity indicators has broad potential applications.

17.
Environ Sci Technol ; 55(20): 13718-13727, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34623137

RESUMEN

Photolysis of oxygenated volatile organic compounds (OVOCs) produces a primary source of free radicals, including OH and inorganic and organic peroxy radicals (HO2 and RO2), consequently increasing photochemical ozone production. The amplification of radical cycling through OVOC photolysis provides an important positive feedback mechanism to accelerate ozone production. The large production of OVOCs near the surface helps promote photochemistry in the whole boundary layer. This amplifier effect is most significant in regions with high nitrogen oxides (NOx) and VOC concentrations such as Wangdu, China. Using a 1-D model with comprehensive observations at Wangdu and the Master Chemical Mechanism (MCM), we find that OVOC photolysis is the largest free-radical source in the boundary layer (46%). The condensed chemistry mechanism we used severely underestimates the OVOC amplifier effect in the boundary layer, resulting in a lower ozone production rate sensitivity to NOx emissions. Due to this underestimation, the model-simulated threshold NOx emission value, below which ozone production decreases with NOx emission decrease, is biased low by 24%. The underestimated OVOC amplifier effect in a condensed mechanism implies a low bias in the current 3-D model-estimated efficacy of NOx emission reduction on controlling ozone in polluted urban and suburban regions of China.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Óxidos de Nitrógeno/análisis , Ozono/análisis , Compuestos Orgánicos Volátiles/análisis
18.
Environ Sci Technol ; 55(8): 4410-4419, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33793220

RESUMEN

Nitrated phenols (NPs) are important atmospheric pollutants that affect air quality, radiation, and health. The recent development of the time-of-flight chemical ionization mass spectrometer (ToF-CIMS) allows quantitative online measurements of NPs for a better understanding of their sources and environmental impacts. Herein, we deployed nitrate ions as reagent ions in the ToF-CIMS and quantified six classes of gaseous NPs in Beijing. The concentrations of NPs are in the range of 1 to 520 ng m-3. Nitrophenol (NPh) has the greatest mean concentration. Dinitrophenol (DNP) shows the greatest haze-to-clean concentration ratio, which may be associated with aqueous production. The high concentrations and distinct diurnal profiles of NPs indicate a strong secondary formation to overweigh losses, driven by high emissions of precursors, strong oxidative capacity, and high NOx levels. The budget analysis on the basis of our measurements and box-model calculations suggest a minor role of the photolysis of NPs (<1 ppb h-1) in producing OH radicals. NPs therefore cannot explain the underestimated OH production in urban environments. Discrepancies between these results and the laboratory measurements of the NP photolysis rates indicate the need for further studies aimed at understanding the production and losses of NPs in polluted urban environments.


Asunto(s)
Contaminantes Atmosféricos , Nitratos , Contaminantes Atmosféricos/análisis , Beijing , Monitoreo del Ambiente , Gases/análisis , Fenoles/análisis
19.
Environ Sci Technol ; 55(17): 11557-11567, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34431667

RESUMEN

The lockdown due to COVID-19 created a rare opportunity to examine the nonlinear responses of secondary aerosols, which are formed through atmospheric oxidation of gaseous precursors, to intensive precursor emission reductions. Based on unique observational data sets from six supersites in eastern China during 2019-2021, we found that the lockdown caused considerable decreases (32-61%) in different secondary aerosol components in the study region because of similar-degree precursor reductions. However, due to insufficient combustion-related volatile organic compound (VOC) reduction, odd oxygen (Ox = O3 + NO2) concentration, an indicator of the extent of photochemical processing, showed little change and did not promote more decreases in secondary aerosols. We also found that the Chinese provinces and international cities that experienced reduced Ox during the lockdown usually gained a greater simultaneous PM2.5 decrease than other provinces and cities with an increased Ox. Therefore, we argue that strict VOC control in winter, which has been largely ignored so far, is critical in future policies to mitigate winter haze more efficiently by reducing Ox simultaneously.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , China , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Oxígeno , Material Particulado/análisis , SARS-CoV-2
20.
Environ Sci Technol ; 54(10): 5973-5979, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32343120

RESUMEN

The oxidation of nitric oxide to nitrogen dioxide by hydroperoxy (HO2) and organic peroxy radicals (RO2) is responsible for the chemical net ozone production in the troposphere and for the regeneration of hydroxyl radicals, the most important oxidant in the atmosphere. In Summer 2014, a field campaign was conducted in the North China Plain, where increasingly severe ozone pollution has been experienced in the last years. Chemical conditions in the campaign were representative for this area. Radical and trace gas concentrations were measured, allowing for calculating the turnover rates of gas-phase radical reactions. Therefore, the importance of heterogeneous HO2 uptake on aerosol could be experimentally determined. HO2 uptake could have suppressed ozone formation at that time because of the competition with gas-phase reactions that produce ozone. The successful reduction of the aerosol load in the North China Plain in the last years could have led to a significant decrease of HO2 loss on particles, so that ozone-forming reactions could have gained importance in the last years. However, the analysis of the measured radical budget in this campaign shows that HO2 aerosol uptake did not impact radical chemistry for chemical conditions in 2014. Therefore, reduced HO2 uptake on aerosol since then is likely not the reason for the increasing number of ozone pollution events in the North China Plain, contradicting conclusions made from model calculations reported in the literature.


Asunto(s)
Ozono/análisis , Aerosoles/análisis , Atmósfera , China , Radical Hidroxilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA