RESUMEN
Toxoplasma gondii (T. gondii) is a neurotropic protozoan parasite, which can cause mental and behavioural disorders. The present study aimed to elucidate the effects and underlying molecular mechanisms of sertraline (SERT) on T. gondii-induced depression-like behaviours. In the present study, a mouse model and a microglial cell line (BV2 cells) model were established by infecting with the T. gondii RH strain. In in vivo and in vitro experiments, the underlying molecular mechanisms of SERT in inhibiting depression-like behaviours and cellular perturbations caused by T. gondii infection were investigated in the mouse brain and BV2 cells. The administration of SERT significantly ameliorated depression-like behaviours in T. gondii-infected mice. Furthermore, SERT inhibited T. gondii proliferation. Treatment with SERT significantly inhibited the activation of microglia and decreased levels of pro-inflammatory cytokines such as tumour necrosis factor-alpha, and interferon-gamma, by down-regulating tumour necrosis factor receptor 1/nuclear factor-kappa B signalling pathway, thereby ameliorating the depression-like behaviours induced by T. gondii infection. Our study provides insight into the underlying molecular mechanisms of the newly discovered role of SERT against T. gondii-induced depression-like behaviours.
Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Depresión/tratamiento farmacológico , Ratones , Microglía/metabolismo , Microglía/parasitología , Sertralina/metabolismo , Sertralina/farmacología , Toxoplasma/fisiología , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/metabolismoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Coix seed, the dry mature seed kernel of the gramineous plant coix (Coix lacryma-jobi L. var. ma-yuen Stapf), is widely consumed as a traditional Chinese medicine and functional food in China and South Korea. We have previously demonstrated the protective effect of coixol, a polyphenolic compound extracted from coix, against Toxoplasma gondii (T. gondii) infection-induced lung injury. However, the protective effect of coixol on hepatic injury induced by T. gondii infection have not yet been elucidated. AIM OF THE STUDY: This study explores the impact of coixol on T. gondii infection-induced liver injury and elucidates the underlying molecular mechanisms. MATERIALS AND METHODS: Female BALB/c mice and Kupffer cells (KCs) were employed to establish an acute T. gondii infection model in vivo and an inflammation model in vitro. The study examined coixol's influence on the T. gondii-derived heat shock protein 70 (T.g.HSP70)/toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signaling pathway in T. gondii-infected liver macrophages. Furthermore, a co-culture system of KCs and NCTC-1469 hepatocytes was developed to observe the impact of liver macrophages infected with T. gondii on hepatocyte injury. RESULTS: Coixol notably inhibited the proliferation of tachyzoites and the expression of T.g.HSP70 in mouse liver and KCs, and attenuated pathological liver injury. Moreover, coixol decreased the production of high mobility group box 1, tumor necrosis factor-α, and inducible nitric oxide synthase by suppressing the TLR4/NF-κB signaling pathway in vitro and in vivo. Coixol also mitigated KCs-mediated hepatocyte injury. CONCLUSIONS: Coixol protects against liver injury caused by T. gondii infection, potentially by diminishing hepatocyte injury through the suppression of the inflammatory cascade mediated by the T.g.HSP70/TLR4/NF-κB signaling pathway in KCs. These findings offer new perspectives for developing coixol as a lead compound for anti-T. gondii drugs.
Asunto(s)
Proteínas HSP70 de Choque Térmico , Ratones Endogámicos BALB C , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Toxoplasma , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Toxoplasma/efectos de los fármacos , Femenino , Ratones , Macrófagos del Hígado/efectos de los fármacos , Macrófagos del Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/parasitología , Hígado/metabolismo , Hígado/patología , Toxoplasmosis/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/parasitología , Coix/químicaRESUMEN
Depression, recognized globally as a primary cause of disability, has its pathogenesis closely related to neuroinflammation and neuronal damage. Arctiin (ARC), the major bioactive component of Fructus arctii, has various pharmacological activities, such as anti-inflammatory and neuroprotective effects. Building on previous findings that highlighted ARC's capability to mitigate depression by dampening microglial hyperactivation and thereby reducing neuroinflammatory responses and cortical neuronal damage in mice, the current study delves deeper into ARC's therapeutic potential by examining its impact on hippocampal neuronal damage in depression. Utilizing both chronic unpredictable mild stress (CUMS)-induced depression model in mice and corticosterone (CORT)-stimulated PC12 cell model of neuronal damage, the techniques including Nissl staining, immunohistochemistry, western blotting, ELISA, lactate dehydrogenase assays, colony formation assays, immunofluorescence staining and molecular docking were employed to unravel the mechanisms behind ARC's neuroprotective effects. The findings revealed that ARC not only mitigates hippocampal neuropathological damage and reduces serum CORT levels in CUMS-exposed mice but also enhances cell activity while reducing lactate dehydrogenase release in CORT-stimulated PC12 cells. ARC attenuated neuroinflammatory responses and neuronal apoptosis by inhibiting the overactivation of the P2X7 receptor (P2X7R)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway, similar to the effect of A438079 (P2X7R antagonist). Interestingly, pretreatment with A438079 blocked the neuroprotective effect of ARC. Computer modeling predicted that both ARC and A438079 have strong binding with P2X7R and they have the same binding site. These results suggested that ARC may exert a neuroprotective role by binding to P2X7R, thereby inhibiting the P2X7R/NLRP3 inflammasome signaling pathway.
RESUMEN
BACKGROUND: Infection by Toxoplasma gondii can lead to severe pneumonia, with current treatments being highly inadequate. The NLRP3 inflammasome is one member of the NOD-like receptor family with a pyrin domain, which is crucial in the innate immune defense against T. gondii. Research has shown that resveratrol (RSV) prevents lung damage caused by this infection by inhibiting the T. gondii-derived heat shock protein 70/TLR4/NF-κB pathway, thus reducing the macrophage-driven inflammatory response. However, it should be mentioned that the participation of NLRP3 inflammasome in the immune response to the lung injuries caused by T. gondii infections is not entirely clear. PURPOSE: This study aims to clarify how RSV ameliorates lung damage triggered by Toxoplasma gondii infection, with a particular focus on the pathway involving TLR4, NF-κB, and the NLRP3 inflammasome. METHODS: Both in vitro and in vivo models of infection were developed by employing the RH strain of T. gondii in BALB/c mice and RAW 264.7 macrophage cell lines. The action mechanism of RSV was explored using techniques such as molecular docking, surface plasmon resonance, ELISA, Western blot, co-immunoprecipitation, and immunofluorescence staining. RESULTS: Findings indicate that the suppression of TLR4 or NF-κB impacts the levels of proteins associated with the NLRP3 inflammasome pathway. Additionally, a significant affinity for binding between RSV and NLRP3 was observed. Treatment with RSV led to a marked reduction in the activation and formation of the NLRP3 inflammasome within lung tissues and RAW 264.7 cells, alongside a decrease in IL-1ß concentrations in the bronchoalveolar lavage fluid. These outcomes align with those seen when using the NLRP3 inhibitor CY-09. Moreover, the application of CY-09 prior to RSV negated the latter's anti-inflammatory properties. CONCLUSION: Considering insights from previous research alongside the outcomes of the current investigation, it appears that the TLR4/NF-κB/NLRP3 signaling pathway emerges as a promising target for immunomodulation to alleviate lung injury from T. gondii infection. The evidence gathered in this study lays the groundwork for the continued exploration and potential future clinical deployment of RSV as a therapeutic agent with anti-Toxoplasma properties and the capability to modulate the inflammatory response.
Asunto(s)
Inflamasomas , Ratones Endogámicos BALB C , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Neumonía , Resveratrol , Receptor Toll-Like 4 , Toxoplasma , Resveratrol/farmacología , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Células RAW 264.7 , Receptor Toll-Like 4/metabolismo , Neumonía/tratamiento farmacológico , Neumonía/parasitología , Toxoplasma/efectos de los fármacos , FN-kappa B/metabolismo , Toxoplasmosis/tratamiento farmacológico , Pulmón/efectos de los fármacos , Pulmón/parasitología , Simulación del Acoplamiento Molecular , Femenino , Transducción de Señal/efectos de los fármacos , Macrófagos/efectos de los fármacosRESUMEN
BACKGROUND: Toxoplasma gondii is an opportunistic protozoan that can infect host to cause toxoplasmosis. We have previously reported that resveratrol (RSV) has protective effects against liver damage in T. gondii infected mice. However, the effect of RSV on lung injury caused by T. gondii infection and its mechanism of action remain unclear. PURPOSE: In this work, we studied the protective effects of RSV on lung injury caused by T. gondii infection and explored the underlying mechanism. METHODS: Molecular docking and localized surface plasmon resonance assay were used to detect the molecular interactions between RSV and target proteins. In vitro, the anti-T. gondii effects and potential anti-inflammatory mechanisms of RSV were investigated by quantitative competitive-PCR, RT-PCR, ELISA, Western blotting and immunofluorescence using RAW 264.7 cells infected with tachyzoites of T. gondii RH strain. In vivo, the effects of RSV on lung injury caused by T. gondii infection were assessed by observing pathological changes and the expression of inflammatory factors of lung. RESULTS: RSV inhibited T. gondii loads and T. gondii-derived heat shock protein 70 (T.g.HSP70) expression in RAW 264.7 cells and lung tissues. Moreover, RSV interacts with T.g.HSP70 and toll-like receptor 4 (TLR4), respectively, and interferes with the interaction between T.g.HSP70 and TLR4. It also inhibited the overproduction of inducible nitric oxide synthase, TNF-α and high mobility group protein 1 (HMGB1) by down-regulating TLR4/nuclear factor kappa B (NF-κB) signaling pathway, which is consistent with the effect of TLR4 inhibitor CLI-095. In vivo, RSV improved the pathological lung damage produced by T. gondii infection, as well as decreased the number of inflammatory cells in bronchoalveolar lavage fluid and the release of HMGB1 and TNF-α. CONCLUSION: These findings indicate that RSV can inhibit the proliferation of T. gondii and T.g.HSP70 expression both in vitro and in vivo. RSV can inhibit excessive inflammatory response by intervening T.g.HSP70 and HMGB1 mediated TLR4/NF-κB signaling pathway activation, thereby ameliorating lung injury caused by T. gondii infection. The present study provides new data that may be useful for the development of RSV as a new agent for the treatment of lung damage caused by T. gondii infection.
Asunto(s)
Proteína HMGB1 , Lesión Pulmonar , Toxoplasma , Animales , Ratones , Toxoplasma/metabolismo , Receptor Toll-Like 4/metabolismo , Proteína HMGB1/metabolismo , Resveratrol/farmacología , FN-kappa B/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Factor de Necrosis Tumoral alfa , Simulación del Acoplamiento Molecular , Proteínas HSP70 de Choque TérmicoRESUMEN
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that causes pulmonary toxoplasmosis, although its pathogenesis is incompletely understood. There is no cure for toxoplasmosis. Coixol, a plant polyphenol extracted from coix seeds, has a variety of biological activities. However, the effects of coixol on T. gondii infection have not been clarified. In this study, we infected a mouse macrophage cell line (RAW 264.7) and BALB/c mice with the T. gondii RH strain to establish infection models in vitro and in vivo, respectively, to explore protective effects and potential mechanisms of coixol on lung injury caused by T. gondii infection. Anti-T. gondii effects and underlying anti-inflammatory mechanisms of coixol were investigated by real-time quantitative PCR, molecular docking, localized surface plasmon resonance, co-immunoprecipitation, enzyme-linked immunosorbent assay, western blotting, and immunofluorescence microscopy. The results show that coixol inhibits T. gondii loads and T. gondii-derived heat shock protein 70 (T.g.HSP70) expression. Moreover, coixol reduced inflammatory cell recruitment and infiltration, and ameliorated pathological lung injury induced by T. gondii infection. Coixol can directly bind T.g.HSP70 or Toll-like receptor 4 (TLR4) to disrupt their interaction. Coixol prevented overexpression of inducible nitric oxide synthase, tumor necrosis factor-α, and high mobility group box 1 by inhibiting activation of the TLR4/nuclear factor (NF)-κB signaling pathway, consistent with effects of the TLR4 inhibitor CLI-095. These results indicate that coixol improves T. gondii infection-induced lung injury by interfering with T.g.HSP70-mediated TLR4/NF-κB signaling. Altogether, these findings suggest that coixol is a promising effective lead compound for the treatment of toxoplasmosis.
Asunto(s)
Lesión Pulmonar , Toxoplasma , Toxoplasmosis , Animales , Ratones , Toxoplasma/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Toxoplasmosis/tratamiento farmacológico , Transducción de Señal , Proteínas HSP70 de Choque Térmico/metabolismoRESUMEN
BACKGROUND: Toxoplasma gondii (T. gondii) is a neurotropic obligate intracellular parasite that can activate microglial and promote neuronal apoptosis, leading to central nervous system diseases. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling complex plays a key role in inducing neuroinflammation. Our previous studies have found that ginsenoside Rh2 (GRh2) inhibits T. gondii infection-induced microglial activation and neuroinflammation by downregulating the Toll-like receptor 4/nuclear factor-kappa B signaling pathway. However, whether GRh2 reduces T. gondii infection-induced neuronal injury through actions on microglial NLRP3 inflammasome signaling has not yet been clarified. METHODS: In this study, we employed T. gondii RH strain to establish in vitro and in vivo infection models in BV2 microglia cell line and BALB/c mice. Molecular docking, localized surface plasmon resonance assay, quantitative competitive-PCR, ELISA, western blotting, flow cytometric analysis, and immunofluorescence were performed. RESULTS: Our results showed that GRh2 alleviated neuropathological damage and neuronal apoptosis in cortical tissue of T. gondii-infected mice. GRh2 and CY-09 (an inhibitor of NLRP3) exhibited potent anti-T. gondii effects through binding T. gondii calcium-dependent protein kinase 1 (TgCDPK1). GRh2 decreased Iba-1 (a specific microglial marker) and NLRP3 inflammasome signaling pathway-related protein expression by binding NLRP3. Co-culture of microglia/primary cortical neurons revealed that T. gondii-induced microglial activation caused neuronal apoptosis, but GRh2 reduced this effect, consistent with the effects of CY-09. CONCLUSION: Taken together, our results show that GRh2 has a protective effect against T. gondii infection-induced neuronal injury by binding TgCDPK1 and NLRP3 to inhibit NLRP3 inflammasome signaling pathway in microglia.
Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Ratones , Inflamasomas/metabolismo , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 4/metabolismo , Simulación del Acoplamiento Molecular , Toxoplasma/metabolismo , Transducción de Señal , Ratones Endogámicos BALB C , Proteínas NLR/metabolismo , Neuronas/metabolismoRESUMEN
BACKGROUND: Maternal Toxoplasma gondii (T. gondii) infection during pregnancy has been associated with various mental illnesses in the offspring. Ginsenoside Rh2 (GRh2) is a major bioactive compound obtained from ginseng that has an anti-T. gondii effect and attenuates microglial activation through toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway. GRh2 also alleviated tumor-associated or lipopolysaccharide-induced depression. However, the effects and potential mechanisms of GRh2 on depression-like behavior in mouse offspring caused by maternal T. gondii infection during pregnancy have not been investigated. METHODS: We examined GRh2 effects on the depression-like behavior in mouse offspring, caused by maternal T. gondii infection during pregnancy, by measuring depression-like behaviors and assaying parameters at the neuronal and molecular level. RESULTS: We showed that GRh2 significantly improved behavioral measures: sucrose consumption, forced swim time and tail suspended immobility time of their offspring. These corresponded with increased tissue concentrations of 5-hydroxytryptamine and dopamine, and attenuated indoleamine 2,3-dioxygenase or enhanced tyrosine hydroxylase expression in the prefrontal cortex. GRh2 ameliorated neuronal damage in the prefrontal cortex. Molecular docking results revealed that GRh2 binds strongly to both TLR4 and high mobility group box 1 (HMGB1). CONCLUSION: This study demonstrated that GRh2 ameliorated the depression-like behavior in mouse offspring of maternal T. gondii infection during pregnancy by attenuating the excessive activation of microglia and neuroinflammation through the HMGB1/TLR4/NF-κB signaling pathway. It suggests that GRh2 could be considered a potential therapy in preventing and treating psychiatric disorders in the offspring mice of mothers with prenatal exposure to T. gondii infection.
RESUMEN
In this work, we design a sensitive and quantitative on-site detecting solution for Aflatoxin B1 (AFB1), Ochratoxin A (OTA) and Zearalenone (ZEN) as often found in moldy grains and harmful to human health. Using quantum dot microsphere-based immunochromatography test strip, the proposed method can sensitively detect AFB1, OTA and ZEN in low detection limits of 0.01 ng/mL, 0.2 ng/mL and 0.032 ng/mL, and quantitatively measure their concentrations from 0.01 ng/mL to 1 ng/mL, from 0.2 ng/mL to 200 ng/mL and from 0.032 ng/mL to 32 ng/mL in high accuracy and good selectivity. More importantly, these multiple mycotoxin detections only relying on simple manual operations and portable handheld test strip reader can be finished on site within 45 min. Therefore, the proposed method is a promising solution supporting sensitive and quantitative on-site detections for multiple mycotoxins.
RESUMEN
We design a novel phase real-time microscope camera (PhaseRMiC) for live cell phase imaging. PhaseRMiC has a simple and cost-effective configuration only consisting of a beam splitter and a board-level camera with two CMOS imaging chips. Moreover, integrated with 3-D printed structures, PhaseRMiC has a compact size of 136×91×60 mm3, comparable to many commercial microscope cameras, and can be directly connected to the microscope side port. Additionally, PhaseRMiC can be well adopted in real-time phase imaging proved with satisfied accuracy, good stability and large field of view. Considering its compact and cost-effective device design as well as real-time phase imaging capability, PhaseRMiC is a preferred solution for live cell imaging.
RESUMEN
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that can cause liver diseases in the host, including hepatitis and hepatomegaly. High mobility group box 1 (HMGB1) is the main inflammatory mediator causing cell injury or necrosis. HMGB1 binds to toll like receptor 4 (TLR4), then activates the nuclear factor-κB (NF-κB) signaling pathway, which promotes the release of inflammatory factors. Our previous studies showed that HMGB1 mediated TLR4/NF-κB signaling pathway plays an important role in liver injury induced by T. gondii infection. Resveratrol (RSV) is a small polyphenol, which has anti-inflammatory, anti-cancer, anti-T. gondii effect. However, the effect of RSV on liver injury caused by T. gondii infection is unclear. This study used the RH strain tachyzoites of T. gondii to infect murine liver line, NCTC-1469 cells to establish an in vitro model and acute infection of mice for the in vivo model to explore the protective effect of RSV on liver injury induced by T. gondii infection. The results showed that RSV inhibited the proliferation of T. gondii in the liver, reduced the alanine aminotransferase/aspartate aminotransferase levels and pathological liver damage. Additionally, RSV inhibited the production of tumor necrosis factor-α, inducible nitric oxide synthase and HMGB1 by interfering with the TLR4/NF-κB signaling pathway. These results indicate that RSV can protect liver injury caused by T. gondii infection by intervening in the HMGB1/TLR4/NF-κB signaling pathway. This study will provide a theoretical basis for RSV treatment of T. gondii infection induced liver injury.
Asunto(s)
Hepatitis Animal/prevención & control , Hígado/efectos de los fármacos , Resveratrol/farmacología , Toxoplasmosis/complicaciones , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Proteína HMGB1/metabolismo , Hepatitis Animal/inmunología , Hepatitis Animal/parasitología , Hepatitis Animal/patología , Hepatocitos/efectos de los fármacos , Hepatocitos/inmunología , Hepatocitos/patología , Humanos , Hígado/citología , Hígado/inmunología , Hígado/patología , Ratones , FN-kappa B/metabolismo , Resveratrol/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Receptor Toll-Like 4/metabolismo , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/inmunología , Toxoplasmosis/parasitologíaRESUMEN
Toxoplasmosis is a parasitic zoonosis with the highest incidence in humans. Severe lesions due to acute toxoplasmosis have been recorded in the visceral organs including the liver, where hepatocytes and Kupffer cells are important innate immune cells. Arctigenin (AG) is a bioactive ingredient of Arctium lappa L. and increasing evidence suggests that AG exhibits anti-oxidant, anti-inflammatory and anti-Toxoplasma gondii (T. gondii) effects. However, the role of AG in acute liver damage induced by T. gondii infection remains unclear. In this study, we analyzed the effects of AG against T. gondii-induced liver damage by establishing an in vitro infection model using a murine liver cell line (NCTC-1469 cells) and an in vivo mouse model with acute T. gondii infection of virulent RH strain. In the current study, AG effectively attenuated hepatocytes apoptosis and inhibited the reproduction of T. gondii. The results of in vitro and in vivo studies showed that AG significantly reduced alanine aminotransferase/aspartate aminotransferase activities and lessened pathological damage of liver. Moreover, AG suppressed T. gondii-induced inducible nitric oxide synthase production. AG also attenuated liver inflammation by inhibiting T. gondii-induced activation of the high-mobility group box1/toll-like receptor 4/nuclear factor-kappa B (HMGB1/TLR4/NF-κB) signaling pathway. These findings demonstrated that AG exhibited prominent hepatoprotective activities in toxoplasmic liver injury with anti-inflammatory effects by inhibiting the HMGB1/TLR4/NF-κB signaling axis. Thus, this study provides the basis for the development of new drugs to treat toxoplasmic hepatitis.
Asunto(s)
Furanos/uso terapéutico , Lignanos/uso terapéutico , Sustancias Protectoras/uso terapéutico , Toxoplasmosis/tratamiento farmacológico , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Línea Celular , Femenino , Furanos/farmacología , Proteína HMGB1/inmunología , Lignanos/farmacología , Hígado/efectos de los fármacos , Hígado/inmunología , Ratones Endogámicos BALB C , FN-kappa B/inmunología , Sustancias Protectoras/farmacología , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/inmunología , Toxoplasma , Toxoplasmosis/inmunologíaRESUMEN
The vertical distribution patterns, the source and correlation of heavy metals were characterized in the bulk soil and different soil aggregates of arable red soil profile (0-100 cm) in Hunan province. Their response to organic carbons in proflie was explored as well. Principal component analysis (PCA) suggested that elements could be divided into two principal components, the metals of the first group were Zn,Cu,Pb,As,Cd, and the second group metals were Cr, Ni. Priniciple component elements had similar sources. In 0-30 cm, The first group metals decreased with increasing depth, the second group metals increased with increasing depth. The concentrations of typical heavy metals were in the order of Zn >Cr >Cu >Pb >Ni >As >Cd. Cd in each soil layer was severely polluted, Zn was at level of light pollution, while other metals were at clean levels. In terms of different size of soil aggregate, it was found that colloids played an important role in facilitating transport of heavy metals, such as As, Cu, Zn, Cd, Cr, Ni. While Pb was still mainly enriched in clay component (<53 µm). Infrared spectrum analysis showed that the main functional groups of organic carbon were polysaccharide (22.07%-47.13%), aromatic (13.88%-34.37%) and alcohol (21.04%-59.49%). Correlation analysis showed that stable organic carbon such as polysaccharide and aromatic organic carbon could stablize the metals of first group in profiles, which would delay the migration of heavy metals to deeper soil. However, the active alcohol carbon would enhance the migration.