Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.527
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(4): 936-48, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27062922

RESUMEN

Neurons receive input from the outside world or from other neurons through neuronal receptive endings (NREs). Glia envelop NREs to create specialized microenvironments; however, glial functions at these sites are poorly understood. Here, we report a molecular mechanism by which glia control NRE shape and associated animal behavior. The C. elegans AMsh glial cell ensheathes the NREs of 12 neurons, including the thermosensory neuron AFD. KCC-3, a K/Cl transporter, localizes specifically to a glial microdomain surrounding AFD receptive ending microvilli, where it regulates K(+) and Cl(-) levels. We find that Cl(-) ions function as direct inhibitors of an NRE-localized receptor-guanylyl-cyclase, GCY-8, which synthesizes cyclic guanosine monophosphate (cGMP). High cGMP mediates the effects of glial KCC-3 on AFD shape by antagonizing the actin regulator WSP-1/NWASP. Components of this pathway are broadly expressed throughout the nervous system, suggesting that ionic regulation of the NRE microenvironment may be a conserved mechanism by which glia control neuron shape and function.


Asunto(s)
Caenorhabditis elegans/metabolismo , Neuroglía/metabolismo , Células Receptoras Sensoriales/metabolismo , Simportadores/metabolismo , Animales , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , GMP Cíclico/metabolismo , Guanilato Ciclasa/química , Guanilato Ciclasa/metabolismo , Potasio/metabolismo , Dominios Proteicos , Simportadores/química , Simportadores/genética , Sensación Térmica , Cotransportadores de K Cl
2.
Mol Cell ; 72(1): 71-83.e7, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220561

RESUMEN

Cancer cells entail metabolic adaptation and microenvironmental remodeling to survive and progress. Both calcium (Ca2+) flux and Ca2+-dependent signaling play a crucial role in this process, although the underlying mechanism has yet to be elucidated. Through RNA screening, we identified one long noncoding RNA (lncRNA) named CamK-A (lncRNA for calcium-dependent kinase activation) in tumorigenesis. CamK-A is highly expressed in multiple human cancers and involved in cancer microenvironment remodeling via activation of Ca2+-triggered signaling. Mechanistically, CamK-A activates Ca2+/calmodulin-dependent kinase PNCK, which in turn phosphorylates IκBα and triggers calcium-dependent nuclear factor κB (NF-κB) activation. This regulation results in the tumor microenvironment remodeling, including macrophage recruitment, angiogenesis, and tumor progression. Notably, our human-patient-derived xenograft (PDX) model studies demonstrate that targeting CamK-A robustly impaired cancer development. Clinically, CamK-A expression coordinates with the activation of CaMK-NF-κB axis, and its high expression indicates poor patient survival rate, suggesting its role as a potential biomarker and therapeutic target.


Asunto(s)
Carcinogénesis/genética , Neoplasias/genética , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Señalización del Calcio/genética , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Macrófagos/metabolismo , Macrófagos/patología , FN-kappa B/genética , Neoplasias/patología , Fosforilación , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Proc Natl Acad Sci U S A ; 120(8): e2206694120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36795754

RESUMEN

Notch has been implicated in human cancers and is a putative therapeutic target. However, the regulation of Notch activation in the nucleus remains largely uncharacterized. Therefore, characterizing the detailed mechanisms governing Notch degradation will identify attractive strategies for treating Notch-activated cancers. Here, we report that the long noncoding RNA (lncRNA) BREA2 drives breast cancer metastasis by stabilizing the Notch1 intracellular domain (NICD1). Moreover, we reveal WW domain containing E3 ubiquitin protein ligase 2 (WWP2) as an E3 ligase for NICD1 at K1821 and a suppressor of breast cancer metastasis. Mechanistically, BREA2 impairs WWP2-NICD1 complex formation and in turn stabilizes NICD1, leading to Notch signaling activation and lung metastasis. BREA2 loss sensitizes breast cancer cells to inhibition of Notch signaling and suppresses the growth of breast cancer patient-derived xenograft tumors, highlighting its therapeutic potential in breast cancer. Taken together, these results reveal the lncRNA BREA2 as a putative regulator of Notch signaling and an oncogenic player driving breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Femenino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias de la Mama/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo
4.
Immunity ; 44(6): 1337-49, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27317260

RESUMEN

Distinct metabolic programs support the differentiation of CD4(+) T cells into separate functional subsets. In this study, we investigated metabolic mechanisms underlying the differentiation of IL-9-producing CD4(+) T cells (Th9) in allergic airway inflammation and cancerous tumors. We found that histone deacetylase SIRT1 negatively regulated Th9 cell differentiation. A deficiency of SIRT1 induced by either conditional deletion in mouse CD4(+) T cells or the use of small interfering RNA (siRNA) in mouse or human T cells increased IL-9 production, whereas ectopic SIRT1 expression inhibited it. Notably, SIRT1 inhibited Th9 cell differentiation that regulated anti-tumor immunity and allergic pulmonary inflammation. Glycolytic activation through the mTOR-hypoxia-inducible factor-1α (HIF1α) was required for the differentiation of Th9 cells that conferred protection against tumors and is involved in allergic airway inflammation. Our results define the essential features of SIRT1-mTOR-HIF1α signaling-coupled glycolytic pathway in inducing Th9 cell differentiation, with implications for metabolic reprogramming as an immunotherapeutic approach.


Asunto(s)
Hipersensibilidad/inmunología , Melanoma/inmunología , Sirtuina 1/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Diferenciación Celular , Células Cultivadas , Glucólisis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-9/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Experimentales , ARN Interferente Pequeño/genética , Transducción de Señal , Sirtuina 1/genética , Serina-Treonina Quinasas TOR/metabolismo , Activación Transcripcional
5.
Proc Natl Acad Sci U S A ; 119(33): e2204141119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35895714

RESUMEN

Susceptibility and severity of COVID-19 infection vary widely. Prior exposure to endemic coronaviruses, common in young children, may protect against SARS-CoV-2. We evaluated risk of severe COVID-19 among adults with and without exposure to young children in a large, integrated healthcare system. Adults with children 0-5 years were matched 1:1 to adults with children 6-11 years, 12-18 years, and those without children based upon a COVID-19 propensity score and risk factors for severe COVID-19. COVID-19 infections, hospitalizations, and need for intensive care unit (ICU) were assessed in 3,126,427 adults, of whom 24% (N = 743,814) had children 18 years or younger, and 8.8% (N = 274,316) had a youngest child 0-5 years. After 1:1 matching, propensity for COVID-19 infection and risk factors for severe COVID-19 were well balanced between groups. Rates of COVID-19 infection were slightly higher for adults with exposure to older children (incident risk ratio, 1.09, 95% confidence interval, [1.05-1.12] and IRR 1.09 [1.05-1.13] for adults with children 6-11 and 12-18, respectively), compared to those with children 0-5 years, although no difference in rates of COVID-19 illness requiring hospitalization or ICU admission was observed. However, adults without exposure to children had lower rates of COVID-19 infection (IRR 0.85, [0.83-0.87]) but significantly higher rates of COVID-19 hospitalization (IRR 1.49, [1.29-1.73]) and hospitalization requiring ICU admission (IRR 1.76, [1.19-2.58]) compared to those with children aged 0-5. In a large, real-world population, exposure to young children was associated with less severe COVID-19 illness. Endemic coronavirus cross-immunity may play a role in protection against severe COVID-19.


Asunto(s)
COVID-19 , Gravedad del Paciente , SARS-CoV-2 , Adolescente , Adulto , COVID-19/epidemiología , COVID-19/transmisión , Niño , Preescolar , Hospitalización/estadística & datos numéricos , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Factores de Riesgo
6.
Nano Lett ; 24(33): 10055-10061, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39047260

RESUMEN

Nonlocal metasurfaces, exemplified by resonant waveguide gratings (RWGs), spatially and angularly configure optical wavefronts through narrow-band resonant modes, unlike the broad-band and broad-angle responses of local metasurfaces. However, forward design techniques for RWGs remain constrained at lower efficiency. Here, we present a topology-optimized metasurface resonant waveguide grating (MRWG) composed of titanium dioxide on a glass substrate capable of operating simultaneously at red, yellow, green, and blue wavelengths. Through adjoint-based topology optimization, while considering nonlocal effects, we significantly enhance its diffraction efficiency, achieving numerical efficiencies up to 78% and Q-factors as high as 1362. Experimentally, we demonstrated efficiencies of up to 59% with a Q-factor of 93. Additionally, we applied our topology-optimized metasurface to color selectivity, producing vivid colors at 4 narrow-band wavelengths. Our investigation represents a significant advancement in metasurface technology, with potential applications in see-through optical combiners and augmented reality platforms.

7.
Breast Cancer Res ; 26(1): 104, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918836

RESUMEN

BACKGROUND: Immune-positron emission tomography (PET) imaging with tracers that target CD8 and granzyme B has shown promise in predicting the therapeutic response following immune checkpoint blockade (ICB) in immunologically "hot" tumors. However, immune dynamics in the low T-cell infiltrating "cold" tumor immune microenvironment during ICB remain poorly understood. This study uses molecular imaging to evaluate changes in CD4 + T cells and CD8 + T cells during ICB in breast cancer models and examines biomarkers of response. METHODS: [89Zr]Zr-DFO-CD4 and [89Zr]Zr-DFO-CD8 radiotracers were used to quantify changes in intratumoral and splenic CD4 T cells and CD8 T cells in response to ICB treatment in 4T1 and MMTV-HER2 mouse models, which represent immunologically "cold" tumors. A correlation between PET quantification metrics and long-term anti-tumor response was observed. Further biological validation was obtained by autoradiography and immunofluorescence. RESULTS: Following ICB treatment, an increase in the CD8-specific PET signal was observed within 6 days, and an increase in the CD4-specific PET signal was observed within 2 days in tumors that eventually responded to immunotherapy, while no significant differences in CD4 or CD8 were found at the baseline of treatment that differentiated responders from nonresponders. Furthermore, mice whose tumors responded to ICB had a lower CD8 PET signal in the spleen and a higher CD4 PET signal in the spleen compared to non-responders. Intratumoral spatial heterogeneity of the CD8 and CD4-specific PET signals was lower in responders compared to non-responders. Finally, PET imaging, autoradiography, and immunofluorescence signals were correlated when comparing in vivo imaging to ex vivo validations. CONCLUSIONS: CD4- and CD8-specific immuno-PET imaging can be used to characterize the in vivo distribution of CD4 + and CD8 + T cells in response to immune checkpoint blockade. Imaging metrics that describe the overall levels and distribution of CD8 + T cells and CD4 + T cells can provide insight into immunological alterations, predict biomarkers of response to immunotherapy, and guide clinical decision-making in those tumors where the kinetics of the response differ.


Asunto(s)
Neoplasias de la Mama , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Inhibidores de Puntos de Control Inmunológico , Tomografía de Emisión de Positrones , Microambiente Tumoral , Animales , Microambiente Tumoral/inmunología , Femenino , Ratones , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Línea Celular Tumoral , Circonio , Radiofármacos , Radioisótopos
8.
J Cell Sci ; 135(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34888671

RESUMEN

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited condition that can cause fatal cardiac arrhythmia. Human mutations in the Ca2+ sensor calmodulin (CaM) have been associated with CPVT susceptibility, suggesting that CaM dysfunction is a key driver of the disease. However, the detailed molecular mechanism remains unclear. Focusing on the interaction with the cardiac ryanodine receptor (RyR2), we determined the effect of CPVT-associated variants N53I and A102V on the structural characteristics of CaM and on Ca2+ fluxes in live cells. We provide novel data showing that interaction of both Ca2+/CaM-N53I and Ca2+/CaM-A102V with the RyR2 binding domain is decreased. Ca2+/CaM-RyR23583-3603 high-resolution crystal structures highlight subtle conformational changes for the N53I variant, with A102V being similar to wild type (WT). We show that co-expression of CaM-N53I or CaM-A102V with RyR2 in HEK293 cells significantly increased the duration of Ca2+ events; CaM-A102V exhibited a lower frequency of Ca2+ oscillations. In addition, we show that CaMKIIδ (also known as CAMK2D) phosphorylation activity is increased for A102V, compared to CaM-WT. This paper provides novel insight into the molecular mechanisms of CPVT-associated CaM variants and will facilitate the development of strategies for future therapies.


Asunto(s)
Calmodulina , Taquicardia Ventricular , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Células HEK293 , Humanos
9.
Small ; 20(16): e2308175, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38032163

RESUMEN

The safe and efficient management of hazardous radioactive iodine is significant for nuclear waste reprocessing and environmental industries. A novel supramolecular framework compound based on cucurbit[8]uril (Q[8]) and 4-aminopyridine (4-AP) is reported in this paper. In the single crystal structure of Q[8]-(4-AP), two 4-AP molecules interact with the outer surface of Q[8] and the two other 4-AP molecules are encapsulated into the Q[8] cavity to form the self-assembly Q[8]-(4-AP). Iodine adsorption experiments show that the as-prepared Q[8]-(4-AP) not only has a high adsorption capacity (1.74 g· g-1) for iodine vapor but also can remove the iodine in the organic solvent and the aqueous solution with the removal efficiencies of 95% and 91%, respectively. The presence of a large number of hydrogen bonds between the iodine molecule and the absorbent, as seen in the single crystal structure of iodine-loaded Q[8]-(4-AP) (I2@Q[8]-(4-AP)), is thought to be responsible for the exceptional iodine adsorption capacity of the material. In addition, the adsorption-desorption tests reveal that the self-assembly material has no significant loss of iodine capture capacity after five cycles, indicating that it has sufficient reusability.

10.
New Phytol ; 241(4): 1720-1731, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38013483

RESUMEN

Wilforlide A is one of the main active constituents produced in trace amounts in Tripterygium wilfordii Hook F, which has excellent anti-inflammatory and immune suppressive effects. Despite the seeming structural simplicity of the compound, the biosynthetic pathway of wilforlide A remains unknown. Gene-specific expression analysis and genome mining were used to identify the gene candidates, and their functions were studied in vitro and in vivo. A modularized two-step (M2S) technique and CRISPR-Cas9 methods were used to construct engineering yeast. Here, we identified a cytochrome P450, TwCYP82AS1, that catalyses C-22 hydroxylation during wilforlide A biosynthesis. We also found that TwCYP712K1 to K3 can further oxidize the C-29 carboxylation of oleanane-type triterpenes in addition to friedelane-type triterpenes. Reconstitution of the biosynthetic pathway in engineered yeast increased the precursor supply, and combining TwCYP82AS1 and TwCYP712Ks produced abrusgenic acid, which was briefly acidified to achieve the semisynthesis of wilforlide A. Our work presents an alternative metabolic engineering approach for obtaining wilforlide A without relying on extraction from plants.


Asunto(s)
Ácido Oleanólico/análogos & derivados , Saccharomyces cerevisiae , Triterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo , Antiinflamatorios/metabolismo
11.
Opt Lett ; 49(7): 1725-1728, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560847

RESUMEN

Ultrasound coupling is one of the critical challenges for traditional photoacoustic (or optoacoustic) microscopy (PAM) techniques transferred to the clinical examination of chronic wounds and open tissues. A promising alternative potential solution for breaking the limitation of ultrasound coupling in PAM is photoacoustic remote sensing (PARS), which implements all-optical non-interferometric photoacoustic measurements. Functional imaging of PARS microscopy was demonstrated from the aspects of histopathology and oxygen metabolism, while its performance in hemodynamic quantification remains unexplored. In this Letter, we present an all-optical thermal-tagging flowmetry approach for PARS microscopy and demonstrate it with comprehensive mathematical modeling and ex vivo and in vivo experimental validations. Experimental results demonstrated that the detectable range of the blood flow rate was from 0 to 12 mm/s with a high accuracy (measurement error:±1.2%) at 10-kHz laser pulse repetition rate. The proposed all-optical thermal-tagging flowmetry offers an effective alternative approach for PARS microscopy realizing non-contact dye-free hemodynamic imaging.


Asunto(s)
Técnicas Fotoacústicas , Tecnología de Sensores Remotos , Técnicas Fotoacústicas/métodos , Reología/métodos , Ultrasonografía/métodos , Microscopía/métodos
12.
J Org Chem ; 89(5): 3184-3193, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364859

RESUMEN

It has recently frequently been found that the kinetic isotope effect (KIE) is independent of temperature (T) in H-tunneling reactions in enzymes but becomes dependent on T in their mutants. Many enzymologists found that the trend is related to different donor-acceptor distances (DADs) at tunneling-ready states (TRSs), which could be sampled by protein dynamics. That is, a more rigid system of densely populated short DADs gives rise to a weaker T dependence of KIEs. Theoreticians have attempted to develop H-tunneling theories to explain the observations, but none have been universally accepted. It is reasonable to assume that the DAD sampling concept, if it exists, applies to the H-transfer reactions in solution, as well. In this work, we designed NADH/NAD+ model reactions to investigate their structural effects on the T dependence of hydride KIEs in acetonitrile. Hammett correlations together with N-CH3/CD3 secondary KIEs were used to provide the electronic structure of the TRSs and thus the rigidity of their charge-transfer complexation vibrations. In all three pairs of reactions, a weaker T dependence of KIEs always corresponds to a steeper Hammett slope on the substituted hydride acceptors. It was found that a tighter/rigid charge-transfer complexation system corresponds with a weaker T dependence of KIEs, consistent with the observations in enzymes.

13.
Environ Sci Technol ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145989

RESUMEN

Water quality criteria (WQC) serve as a scientific foundation for pollutant risk assessment and control in aquatic ecosystems. The development of regionally differentiated WQC tailored to specific regional characteristics has become an emerging trend. However, the current WQC is constrained by a lack of regional species toxicity data. To address these limitations, this study proposes the biological toxicity effect ratio (BER) method, which indirectly reflects the toxicity sensitivity of the overall aquatic ecosystem through the toxicity information on a limited number of species, enabling rapid WQC prediction. Using the established WQC in China and the USA as a case study, we combined mathematical derivation and data validation to evaluate the BER method. Among various species-taxon groups of freshwater organisms, planktonic crustaceans demonstrated the highest predictive accuracy. Our analysis further revealed that species toxicity sensitivity and regional variability jointly influence the prediction accuracy. Regardless of the evaluation indexes, planktonic crustaceans emerged as the most suitable species-taxon group for the BER method. Additionally, the BER method is particularly applicable to pollutants with conserved mechanisms across species. This study systematically explores the feasibility of using the BER method and offers new insights for deriving regionally differentiated WQC.

14.
J Nat Prod ; 87(2): 176-185, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38277488

RESUMEN

Celastrol is a bioactive pentacyclic triterpenoid with promising therapeutic effects that is mainly distributed in Celastraceae plants. Although some enzymes involved in the celastrol biosynthesis pathway have been reported, many biosynthetic steps remain unknown. Herein, transcriptomics and metabolic profiles of multiple species in Celastraceae were integrated to screen for cytochrome P450s (CYPs) that are closely related to celastrol biosynthesis. The CYP716 enzyme, TwCYP716C52, was found to be able to oxidize the C-2 position of polpunonic acid, a precursor of celastrol, to form the wilforic acid C. RNAi-mediated repression of TwCYP716C52 in Tripterygium wilfordii suspension cells further confirmed its involvement in celastrol biosynthesis. The C-2 catalytic mechanisms of TwCYP716C52 were further explored by using molecular docking and site-directed mutagenesis experiments. Moreover, a modular optimization strategy was used to construct an engineered yeast to produce wilforic acid C at a titer of 5.8 mg·L-1. This study elucidates the celastrol biosynthetic pathway and provides important functional genes and sufficient precursors for further enzyme discovery.


Asunto(s)
Saccharomyces cerevisiae , Triterpenos , Saccharomyces cerevisiae/metabolismo , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos , Triterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Tripterygium/genética
15.
Cereb Cortex ; 33(7): 3387-3400, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35851912

RESUMEN

Functional homotopy, the high degree of spontaneous activity synchrony and functional coactivation between geometrically corresponding interhemispheric regions, is a fundamental characteristic of the intrinsic functional architecture of the brain. However, little is known about the genetic mechanisms underlying functional homotopy. Resting-state functional magnetic resonance imaging data from a discovery dataset (656 healthy subjects) and 2 independent cross-race, cross-scanner validation datasets (103 and 329 healthy subjects) were used to calculate voxel-mirrored homotopic connectivity (VMHC) indexing brain functional homotopy. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial correlation analysis was conducted to identify genes linked to VMHC. We found 1,001 genes whose expression measures were spatially associated with VMHC. Functional enrichment analyses demonstrated that these VMHC-related genes were enriched for biological functions including protein kinase activity, ion channel regulation, and synaptic function as well as many neuropsychiatric disorders. Concurrently, specific expression analyses showed that these genes were specifically expressed in the brain tissue, in neurons and immune cells, and during nearly all developmental periods. In addition, the VMHC-associated genes were linked to multiple behavioral domains, including vision, execution, and attention. Our findings suggest that interhemispheric communication and coordination involve a complex interaction of polygenes with a rich range of functional features.


Asunto(s)
Imagen por Resonancia Magnética , Transcriptoma , Humanos , Encéfalo , Mapeo Encefálico/métodos , Neuroimagen
16.
Addict Biol ; 29(2): e13375, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38380802

RESUMEN

Recent studies found that non-coding RNAs (ncRNAs) played crucial roles in drug addiction through epigenetic regulation of gene expression and underlying drug-induced neuroadaptations. In this study, we characterized lncRNA transcriptome profiles in the nucleus accumbens (NAc) of mice exhibiting morphine-conditioned place preference (CPP) and explored the prospective roles of novel differentially expressed lncRNA, lncLingo2 and its derived miR-876-5p in the acquisition of opioids-associated behaviours. We found that the lncLingo2 was downregulated within the NAc core (NAcC) but not in the NAc shell (NAcS). This downregulation was found to be associated with the development of morphine CPP and heroin intravenous self-administration (IVSA). As Mfold software revealed that the secondary structures of lncLingo2 contained the sequence of pre-miR-876, transfection of LV-lncLingo2 into HEK293 cells significantly upregulated miR-876 expression and the changes of mature miR-876 are positively correlated with lncLingo2 expression in NAcC of morphine CPP trained mice. Delivering miR-876-5p mimics into NAcC also inhibited the acquisition of morphine CPP. Furthermore, bioinformatics analysis and dual-luciferase assay confirmed that miR-876-5p binds to its target gene, Kcnn3, selectively and regulates morphine CPP training-induced alteration of Kcnn3 expression. Lastly, the electrophysiological analysis indicated that the currents of small conductance calcium-activated potassium (SK) channel was increased, which led to low neuronal excitability in NAcC after CPP training, and these changes were reversed by lncLingo2 overexpression. Collectively, lncLingo2 may function as a precursor of miR-876-5p in NAcC, hence modulating the development of opioid-associated behaviours in mice, which may serve as an underlying biomarker and therapeutic target of opioid addiction.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Ratones , Animales , Analgésicos Opioides/farmacología , Analgésicos Opioides/metabolismo , Epigénesis Genética , Células HEK293 , Morfina/farmacología , Morfina/metabolismo , Núcleo Accumbens/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
17.
BMC Public Health ; 24(1): 2498, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272038

RESUMEN

BACKGROUND: Thyroid disorders(TD) poses a significant health threat to Americans due to its high incidence rate. Obesity, a common factor linked to thyroid disorders, has garnered increasing attention. While Body mass index (BMI) is a widely used obesity index, it fails to account for the distribution of muscle and fat in the body. Recently, tMFR has emerged as a crucial obesity index in clinical research, warranting further investigation into its association with TD. OBJECTIVE: Exploring the association between tMFR and thyroid disorders. METHOD: A comprehensive survey and data analysis were conducted using the NHANES database to investigate the relationship between tMFR and the risk of TD. This study utilized multiple logistic regression, smooth curve fitting, and subgroup analysis across four periods from 2011 to 2018. RESULT: A total of 11,912 subjects were included in the study, showing a prevalence of 7.14% for TD. The research indicated that tMFR had an inverse correlation with the risk of TD in a comprehensive model (OR = 0.90, 95% CI 0.82 to 1.00). When tMFR was divided into quartiles (Q1-Q4), individuals in the highest quartile had a 28% lower risk of TD than those in Q1 (OR = 0.72, 95% CI 0.57 to 0.91). Analysis using smoothed curve fitting demonstrated a nonlinear relationship between tMFR and TD risk, with the inflection point for tMFR saturation effect identified as 1.5. Subgroup analysis further confirmed the strong association between tMFR and TD risk. Receiver operating characteristic (ROC) curve analysis indicated that tMFR exhibited superior predictive ability for TD relative to BMI. CONCLUSION: The study found a negative association between tMFR and the risk of TD; however, additional prospective studies are required to validate these findings.


Asunto(s)
Encuestas Nutricionales , Enfermedades de la Tiroides , Humanos , Estudios Transversales , Masculino , Femenino , Enfermedades de la Tiroides/epidemiología , Persona de Mediana Edad , Adulto , Estados Unidos/epidemiología , Tejido Adiposo , Factores de Riesgo , Índice de Masa Corporal , Obesidad/epidemiología , Anciano , Adulto Joven , Prevalencia , Músculo Esquelético
18.
Int J Technol Assess Health Care ; 40(1): e8, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38221900

RESUMEN

OBJECTIVES: This study aims to gain insight into each attribute as presented in the value of implantable medical devices, quantify attributes' strength and their relative importance, and identify the determinants of stakeholders' preferences. METHODS: A mixed-methods design was used to identify attributes and levels reflecting stakeholders' preference toward the value of implantable medical devices. This design combined literature reviewing, expert's consultation, one-on-one interactions with stakeholders, and a pilot testing. Based on the design, six attributes and their levels were settled. Among 144 hypothetical profiles, 30 optimal choice sets were developed, and healthcare professionals (decision-makers, health technology assessment experts, hospital administrators, medical doctors) and patients as stakeholders in China were surveyed. A total of 134 respondents participated in the survey. Results were analyzed by mixed logit model and conditional logit model. RESULTS: The results of the mixed logit model showed that all the six attributes had a significant impact on respondents' choices on implantable medical devices. Respondents were willing to pay the highest for medical devices that provided improvements in clinical safety, followed by increased clinical effectiveness, technology for treating severe diseases, improved implement capacity, and innovative technology (without substitutes). CONCLUSIONS: The findings of DCE will improve the current evaluation on the value of implantable medical devices in China and provide decision-makers with the relative importance of the criteria in pricing and reimbursement decision-making of implantable medical devices.


Asunto(s)
Prioridad del Paciente , Prótesis e Implantes , Humanos , Encuestas y Cuestionarios , Resultado del Tratamiento , China , Conducta de Elección
19.
World J Surg Oncol ; 22(1): 51, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336734

RESUMEN

BACKGROUND: Presurgical computed tomography (CT)-guided localization is frequently employed to reduce the thoracotomy conversion rate, while increasing the rate of successful sublobar resection of ground glass nodules (GGNs) via video-assisted thoracoscopic surgery (VATS). In this study, we compared the clinical efficacies of presurgical CT-guided hook-wire and indocyanine green (IG)-based localization of GGNs. METHODS: Between January 2018 and December 2021, we recruited 86 patients who underwent CT-guided hook-wire or IG-based GGN localization before VATS resection in our hospital, and compared the clinical efficiency and safety of both techniques. RESULTS: A total of 38 patients with 39 GGNs were included in the hook-wire group, whereas 48 patients with 50 GGNs were included in the IG group. There were no significant disparities in the baseline data between the two groups of patients. According to our investigation, the technical success rates of CT-based hook-wire- and IG-based localization procedures were 97.4% and 100%, respectively (P = 1.000). Moreover, the significantly longer localization duration (15.3 ± 6.3 min vs. 11.2 ± 5.3 min, P = 0.002) and higher visual analog scale (4.5 ± 0.6 vs. 3.0 ± 0.5, P = 0.001) were observed in the hook-wire patients, than in the IG patients. Occurrence of pneumothorax was significantly higher in hook-wire patients (27.3% vs. 6.3%, P = 0.048). Lung hemorrhage seemed higher in hook-wire patients (28.9% vs. 12.5%, P = 0.057) but did not reach statistical significance. Lastly, the technical success rates of VATS sublobar resection were 97.4% and 100% in hook-wire and IG patients, respectively (P = 1.000). CONCLUSIONS: Both hook-wire- and IG-based localization methods can effectively identified GGNs before VATS resection. Furthermore, IG-based localization resulted in fewer complications, lower pain scores, and a shorter duration of localization.


Asunto(s)
Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Nódulo Pulmonar Solitario , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/cirugía , Verde de Indocianina , Nódulo Pulmonar Solitario/diagnóstico por imagen , Nódulo Pulmonar Solitario/cirugía , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Cirugía Torácica Asistida por Video/métodos , Pulmón , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Nódulos Pulmonares Múltiples/cirugía
20.
Environ Toxicol ; 39(7): 4047-4057, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38644733

RESUMEN

Cadmium (Cd) is a pervasive environmental contaminant and a significant risk factor for liver injury. The present study was undertaken to evaluate the involvement of ferroptosis and neutrophil extracellular traps (NETs) in Cd-induced liver injury in Nile tilapia (Oreochromis niloticus), and to explore its underlying mechanism. Cd-induced liver injury was associated with increased total iron, malondialdehyde (MDA), and Acyl-CoA synthetase long-chain family member 4 (ACSL4), together with reduced levels of glutathione, glutathione peroxidase-4a (Gpx4a), and solute carrier family 7 member 11 (SLC7A11), which are all hallmarks of ferroptosis. Moreover, liver hyperemia, neutrophil infiltration, increased inflammatory factors and myeloperoxidase, as well as elevated serum DNA content in Cd-stimulated Nile tilapia suggested that a considerable number of neutrophils were recruited to the liver. Furtherly, in vitro experiments demonstrated that Cd induced the formation of NETs, and the possible mechanism was related to the generation of reactive oxygen species and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, along with the P38 and extracellular regulated protein kinase (ERK) signaling pathways. We concluded that ferroptosis and NETs are the critical mechanisms contributing to Cd-induced liver injury in Nile tilapia. These findings will contribute to Cd toxicological studies in aquatic animals.


Asunto(s)
Cadmio , Cíclidos , Trampas Extracelulares , Ferroptosis , Animales , Ferroptosis/efectos de los fármacos , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/metabolismo , Cíclidos/metabolismo , Cadmio/toxicidad , Neutrófilos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Contaminantes Químicos del Agua/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA