Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Small ; : e2401123, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38659372

RESUMEN

Matching the thickness of the graphitic carbon nitride (CN) nanolayer with the charge diffusion length is expected to compensate for the poor intrinsic conductivity and charge recombination in CN for photoelectrochemical cells (PEC). Herein, the compact CN nanolayer with tunable thickness is in situ coated on carbon fibers. The compact packing along with good contact with the substrate improves the electron transport and alleviates the charge recombination. The PEC investigation shows CN nanolayer of 93 nm-thick yields an optimum photocurrent of 116 µA cm-2 at 1.23 V versus RHE, comparable to most micrometer-thick CN layers, with a low onset potential of 0.2 V in 1 m KOH under 1 sun illumination. This optimum performance suggests the electron diffusion length matches with the thickness of the CN nanolayer. Further deposition of NiFe-layered double hydroxide enhanced the surface water oxidation kinetics, delivering an improved photocurrent of 210 µA cm-2 with IPCE of 12.8% at 400 nm. The CN nanolayer also shows extended potential in PEC organic synthesis. This work experimentally reveals the PEC behavior of the nanometer-thick CN layer, providing new insights into CN in the application of energy and environment-related fields.

2.
Inorg Chem ; 63(9): 4312-4327, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38354197

RESUMEN

It is crucial to eliminate CO emissions using non-noble catalysts. Cu-based catalysts have been widely applied in CO oxidation, but their activity and stability at low temperatures are still challenging. This study reports the preparation and application of an efficient copper-doped ceria electrospun fiber catalyst prepared by a facile electrospinning method. The obtained 10Cu-Ce fiber catalyst achieved complete CO oxidation at a temperature as low as 90 °C. However, a reference 10Cu/Ce catalyst prepared by the impregnation method needed 110 °C to achieve complete CO oxidation under identical reaction conditions. Asymmetric oxygen vacancies (ASOV) at the interface between copper and cerium were constructed, to effectively absorb gas molecules involved in the reaction, leading to the enhanced oxidation of CO. The exceptional ability of the 10Cu-Ce catalyst to adsorb CO is attributed to its unique structure and surface interaction phase Cu+-Ov-Ce3+, as demonstrated by a series of characterizations and DFT calculations. This novel approach of using electrospinning offers a promising technique for developing low-temperature and non-noble metal-based catalysts.

3.
Nano Lett ; 23(22): 10563-10570, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37926962

RESUMEN

Efficient oil/water separation tackles various issues in occasions of oil leakage and oil discharge, such as environmental pollution, recollection of the oil, and saving the water. Herein, a compact superhydrophobic/superoleophilic graphitic carbon nitride nanolayer coated on carbon fiber networks (CNBA/CF) is designed and synthesized for efficient gravity-driven oil/water separation. The CNBA/CF shows excellent oil absorption and an impressive oil/water filtration separation performance. The flux reaches the state-of-art value of 4.29 × 105 L/m2/h for dichloromethane with separation efficiency up to 99%. Successive oil absorption tests, long-term filtration separation, and harsh conditions experiments confirm the remarkable separation and chemical structure stability of the CNBA/CF filter. Besides, the CNBA/CF demonstrates good photocatalytic antifouling ability thanks to the extended visible light absorption and improved charge separation. This work combines the material surface wettability modulation with a photocatalytic self-cleaning property in the fabrication of efficient oil/water separation materials while overcoming the filter fouling issue.

4.
Inorg Chem ; 62(28): 11056-11063, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37411009

RESUMEN

Electrochemical water splitting is a green strategy for hydrogen (H2) production but is severely hindered by the sluggish anodic oxygen evolution reaction (OER). Therefore, replacing the sluggish anodic OER with more favorable oxidation reactions is an energy-saving approach for hydrogen production. Hydrazine borane (HB, N2H4BH3) is considered a potential hydrogen storage material due to its easy preparation, nontoxicity, and high chemical stability. Furthermore, the complete electrooxidation of HB has a unique characteristic of a much lower potential compared to that of OER. All these make it an ideal alternative for energy-saving electrochemical hydrogen production, however, which has never been reported so far. Herein, HB oxidation (HBOR)-assisted overall water splitting (OWS) is proposed for the first time for energy-saving electrochemical hydrogen production. The as-synthesized NiCoP@CoFeP nanoneedle array catalyst exhibited superefficient OER, hydrogen evolution reaction (HER), and HBOR performance. Impressively, NiCoP@CoFeP serves as both anodic and cathodic electrocatalysts for HB-assisted OWS, only requires a low cell voltage of only 0.078 V to achieve a current density of 10 mA cm-2, which was 1.4 V lower than that for HB-free OWS, indicating the highly energy-saving H2 production.

5.
Inorg Chem ; 62(30): 11796-11808, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37471103

RESUMEN

The rational design of an oxygen electrocatalyst with low cost and high activity is greatly desired for realization of the practical water-splitting industry. Herein, we put forward a rational method to construct nonprecious-metal catalysts with high activity by designing the microstructure and modulating the electronic state. Iron (Fe)-doped Ni2P hollow polyhedrons decorated with nitrogen-doped carbon (Fe-Ni2P/NC HPs) are prepared by a sequential metal-organic-framework-templated strategy. Benefiting from the strong electronic coupling, rapid charge-transfer capability, and abundant catalytic active sites, the obtained Fe-Ni2P/NC HPs exhibit an impressive electrocatalytic performance toward the oxygen evolution reaction (OER) with an ultralow overpotential of 228 mV at a current density of 10 mA cm-2 and a small Tafel slope of 33.4 mV dec-1, superior to the commercial RuO2 and most reported electrocatalysts. Notably, this catalyst also shows long durability with an almost negligible activity decay over 210 h for the OER. Combining density functional theory calculations with experiments demonstrates that the doped Fe and the incorporated carbon effectively modulate the electronic structure, enhance the conductivity, and greatly reduce the energy barrier of the rate-determining step in the process of OER. Thus, fast OER kinetics is realized. Moreover, this synthetic strategy can be extended to the synthesis of Fe-NiS2/NC HPs and Fe-NiSe2/NC HPs with excellent OER performance and long-term durability. This work furnishes an instructive idea in pursuit of nonprecious-metal materials with robust electrocatalytic activity and long durability.

6.
Langmuir ; 38(12): 3694-3710, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35285652

RESUMEN

Using the dispersion-corrected density functional theory (DFT-D3) method, we systematically studied the adsorption of 15 kinds of transition-metal (TM) clusters on pristine graphene (Gr) and N-doped graphene (N-Gr). It has been found that TMn (n = 1-4) clusters adsorbed on the N-Gr surface are much stronger than those on the pristine Gr surface, while 3d series clusters present similar geometries on Gr and N-Gr surfaces. The most preferred sites of TMs migrate from hollow to bridge to the top site on the Gr surface along the d series in the periodic table, while the preferred sites of TMs migrate in a much more complex manner on the N-Gr surface. It has also been found that charge transfer decreases along the d series for adsorbed clusters on both surfaces, but adsorbed clusters present less charge transfer on the N-Gr surface than on the Gr surface. What is more interesting is that some TM (Tc, Ru, and Re) clusters change the growth mechanism from the three-dimensional (3D) growth mode on the Gr surface to the two-dimensional (2D) growth mode on the N-Gr surface. At last, it has been found that adsorbed clusters are more dispersed on the N-Gr surface than on the pristine Gr surface due to growth and average aggregation energies.

7.
Inorg Chem ; 61(45): 18102-18111, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36325636

RESUMEN

Formic acid (HCOOH, FA) is emerging as an appealing carrier for hydrogen storage owing to its renewability, a high volumetric capacity of 53 g H2/L, and convenient storage/transportation as a liquid. It is highly desired but still a challenge to search highly efficient catalysts to realize hydrogen evolution from FA. Here, monodispersed and ultrasmall Pd-La(OH)3 nanoparticles (NPs) anchored on amine-functionalized N-doped porous carbon bowl (N-PCB-NH2) substrates have been fabricated through a facile wet chemistry approach. As a result of the ultrafine size of Pd-La(OH)3 NPs (1.6 nm), the deprotonation ability of La(OH)3 and amine groups, and the strong metal-support interaction between Pd-La(OH)3 and N-PCB-NH2, the as-prepared Pd-La(OH)3/N-PCB-NH2 catalyst exhibits 100% H2 selectivity and exceptional catalytic property with a high turnover frequency value up to 9585 h-1 for FA dehydrogenation at 323 K, which is superior to most of the heterogeneous catalysts ever reported. Kinetic isotope effect measurements demonstrate that the C-H bond cleavage is a rate-determining step in the FA dehydrogenation reaction as compared to the O-H bond dissociation. This work presents a feasible approach to synthesize supported ultrafine metal NP catalysts with porous bowl structures for H2 generation from FA.

8.
Inorg Chem ; 60(2): 959-966, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33356196

RESUMEN

A novel nonprecious Fe2O3 nanoparticle decorated NiO nanosheet (Fe2O3 NPs@NiO NSs) composite has been obtained by a rapid one-pot electrochemical exfoliation method and can be used as an efficient oxygen evolution reaction (OER) catalyst. In the nanocomposite, the Fe2O3 NPs are uniformly anchored on the ultrathin graphene-like NiO nanosheets. At the same time, we also studied the influence of the Fe/Ni molar ratio on the morphology and catalytic activity. The Fe2O3 NPs@NiO NSs nanocomposite possessed a high BET surface area (194.1 m2 g-1), which is very conducive to the charge/mass transfer of electrolyte ions and O2. Owing to the unique two-dimensional (2D) heterostructures and rational Fe content, the as-prepared Fe2O3 NPs@NiO NSs show high catalytic performance, a low overpotential at 10 mA cm-2 (221 mV), a small Tafel slope (53.4 mV dec-1), and 2000 cycle and 20 h long-term durability. The introduction of Fe2O3 NPs is beneficial to accelerating charge transport, increasing the electrochemically active surface area (ECSA), and thus improving the release of oxygen bubbles from the electrode surface.

9.
Inorg Chem ; 60(21): 16761-16768, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34647726

RESUMEN

As the core of an electrocatalyst, the active site is critical to determine its catalytic performance in the hydrogen evolution reaction (HER). In this work, porous N-doped carbon-encapsulated CoP nanoparticles on both sides of graphene (CoP@NC/GR) are derived from a bimetallic metal-organic framework (MOF)@graphene oxide composite. Through active site engineering by tailoring the environment around CoP and engineering the structure, the HER activity of CoP@NC/GR heterostructures is significantly enhanced. Both X-ray photoelectron spectroscopy (XPS) results and density functional theory (DFT) calculations manifest that the electronic structure of CoP can be modulated by the carbon matrix of NC/GR, resulting in electron redistribution and a reduction in the adsorption energy of hydrogen (ΔGH*) from -0.53 to 0.04 eV. By engineering the sandwich-like structure, active sites in CoP@NC/GR are further increased by optimizing the Zn/Co ratio in the bimetallic MOF. Benefiting from this active site engineering, the CoP@NC/GR electrocatalyst exhibits small overpotentials of 105 mV in 0.5 M H2SO4 (or 125 mV in 1 M KOH) to 10 mA cm-2, accelerated HER kinetics with a low Tafel slope of 47.5 mV dec-1, and remarkable structural and HER stability.

10.
Inorg Chem ; 59(8): 5781-5790, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32266813

RESUMEN

Designing highly efficient catalysts for use in fuel production is a highly attractive research area but still remains challenging. Herein, for the first time, ultrafine Ni nanoparticles (NPs) self-assembled on ceria nanowires (NWs) and then embedded in a microporous silica shell (denoted as Ni-CeO2@SiO2) are successfully designed and synthesized via a one-pot facile strategy. The average diameter of Ni-CeO2 NWs is just 2.9 nm, and the length is up to 102.7 nm. The resulting Ni-CeO2@SiO2 exhibits high performance and 100% hydrogen selectivity for H2 production from N2H4 and N2H4BH3 in aqueous solution. Unexpectedly, Ni-CeO2@SiO2 also has good catalytic performance and thermal stability for CO2 methanation. The high catalytic performance of Ni-CeO2@SiO2 can be attributed to the synergistic electronic effect and strong interaction between Ni NPs and CeO2 NWs with plenty of oxygen vacancies, as well as the unique structure effect. As an effective strategy, the present work provides an opportunity to embed ultrafine metal NPs-CeO2 NWs into a microporous silica shell, which has broad application prospects in various catalytic fields.

11.
Inorg Chem ; 56(19): 11938-11945, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28930439

RESUMEN

The catalytic dehydrogenation of hydrazine borane (N2H4BH3) and hydrous hydrazine (N2H4·H2O) for H2 evolution is considered as two of the pivotal reactions for the implementation of the hydrogen-based economy. A reduction rate controlled strategy is successfully applied for the encapsulating of uniform tiny NiPt alloy nanoclusters within the opening porous channels of MOFs in this work. The resultant Ni0.9Pt0.1/MOF core-shell composite with a low Pt content exerted exceedingly high activity and durability for complete H2 evolution (100% hydrogen selectivity) from alkaline N2H4BH3 and N2H4·H2O solution. The features of small NiPt alloy NPs, strong synergistic effect between NiPt alloy NPs and the MOF, and open pore structure for freely mass transfer made NiPt/MIL-101 an excellent catalyst for highly efficient H2 evolution from N2H4BH3 or N2H4·H2O.

12.
J Am Chem Soc ; 137(50): 15882-91, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26642084

RESUMEN

Metal and alloy nanomaterials have intriguing oxidase- and superoxide dismutation-like (SOD-like) activities. However, origins of these activities remain to be studied. Using density functional theory (DFT) calculations, we investigate mechanisms of oxidase- and SOD-like properties for metals Au, Ag, Pd and Pt and alloys Au4-xMx (x = 1, 2, 3; M = Ag, Pd, Pt). We find that the simple reaction-dissociation of O2-supported on metal surfaces can profoundly account for the oxidase-like activities of the metals. The activation (Eact) and reaction energies (Er) calculated by DFT can be used to effectively predict the activity. As verification, the calculated activity orders for series of metal and alloy nanomaterials are in excellent agreement with those obtained by experiments. Briefly, the activity is critically dependent on two factors, metal compositions and exposed facets. On the basis of these results, an energy-based model is proposed to account for the activation of molecular oxygen. As for SOD-like activities, the mechanisms mainly consist of protonation of O2(•-) and adsorption and rearrangement of HO2(•) on metal surfaces. Our results provide atomistic-level insights into the oxidase- and SOD-like activities of metals and pave a way to the rational design of mimetic enzymes based on metal nanomaterials. Especially, the O2 dissociative adsorption mechanism will serve as a general way to the activation of molecular oxygen by nanosurfaces and help understand the catalytic role of nanomaterials as pro-oxidants and antioxidants.


Asunto(s)
Oro/farmacología , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Paladio/farmacología , Platino (Metal)/farmacología , Plata/farmacología , Superóxido Dismutasa/metabolismo
13.
Chemistry ; 20(17): 4885-90, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24648263

RESUMEN

The syntheses and structures of two new Zn(II) complexes, a 2D graphite-like layer {[Zn(PIA)H2 O]⋅H2 O}n (1) and an independent 1D single-walled metal-organic nanotube (SWMONT) {[Zn2 (PIA)2 (bpy)2 ]⋅2.5 H2 O⋅DMA}n (2), have been reported based on a "Y"-shaped 5-(pyridine-4-yl)isophthalic acid ligand (H2 PIA). Interestingly, the 2D graphite-like layer in 1 can transform into the independent 1D SWMONT in 2 with addition of 2,2'-bipyridine (bpy), which represents the first successfully experimental example of an independent 1D metal-organic nanotube generated from a 2D layer by a "rolling-up" mechanism.

14.
ChemSusChem ; 17(9): e202400415, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38482550

RESUMEN

The development of low-cost and high-efficiency catalysts for the hydrolytic dehydrogenation of ammonia borane (AB, NH3BH3) is still a challenging technology. Herein, ultrafine MoOx-doped Ni nanoparticles (~3.0 nm) were anchored on g-C3N4@glucose-derived nitrogen-doped carbon nanosheets via a phosphate-mediated method. The strong adsorption of phosphate-mediated nitrogen-doped carbon nanosheets (PNCS) for metal ions is a key factor for the preparation of ultrasmall Ni nanoparticles (NPs). Notably, the alkaline environment formed by the reduction of metal ions removes the phosphate from the PNCS surface to generate P-free (P)NCS so that the phosphate does not participate in the subsequent catalytic reaction. The synthesized Ni-MoOx/(P)NCS catalysts exhibited outstanding catalytic properties for the hydrolysis of AB, with a high turnover frequency (TOF) value of up to 85.7 min-1, comparable to the most efficient noble-metal-free catalysts and commercial Pt/C catalyst ever reported for catalytic hydrogen production from AB hydrolysis. The superior performance of Ni-MoOx/(P)NCS can be ascribed to its well-dispersed ultrafine metal NPs, abundant surface basic sites, and electron-rich nickel species induced by strong electronic interactions between Ni-MoOx and (P)NCS. The strategy of combining multiple modification measures adopted in this study provides new insights into the development of economical and high-efficiency noble-metal-free catalysts for energy catalysis applications.

15.
ACS Nano ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38318803

RESUMEN

A rarely discussed phenomenon in the realm of photocatalytic materials involves the presence of gradient distributed dopants and defects from the interior to the surface. This intriguing characteristic has been successfully achieved in the case of ZnS through the incorporation of atomic monovalent copper ions (Cu+) and concurrent sulfur vacancies (Vs), resulting in a photocatalyst denoted as G-CZS1-x. Through the cooperative action of these atomic Cu dopants and Vs, G-CZS1-x significantly extends its photoabsorption range to encompass the full spectrum (200-2100 nm), which improves the solar utilization ability. This alteration enhances the efficiency of charge separation and optimizes Δ(H*) (free energy of hydrogen adsorption) to approach 0 eV for the hydrogen evolution reaction (HER). It is noteworthy that both surface-exposed atomic Cu and Vs act as active sites for photocatalysis. G-CZS1-x exhibits a significant H2 evolution rate of 1.01 mmol h-1 in the absence of a cocatalyst. This performance exceeds the majority of previously reported photocatalysts, exhibiting approximately 25-fold as ZnS, and 5-fold as H-CZS1-x with homogeneous distribution of equal content Cu dopants and Vs. In contrast to G-CZS1-x, the H adsorption on Cu sites for H-CZS1-x (ΔG(H*) = -1.22 eV) is excessively strong to inhibit the H2 release, and the charge separation efficiency for H-CZS1-x is relatively sluggish, revealing the positive role of a gradient distribution model of dopants and defects on activity enhancement. This work highlights the synergy of atomic dopants and defects in advancing photoactivity, as well as the significant benefit of the controllable distribution model of dopants and defects for photocatalysis.

16.
J Phys Chem A ; 117(24): 5178-83, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23718624

RESUMEN

The geometrical and electronic structures of the electron-deficient dialuminum aurides Al2Aun(0/-) and hybrid boron-aluminum aurides BAlAun(0/-) (n = 1-3) are systematically investigated based on the density and wave function theories. Ab initio theoretical evidence strongly suggests that bridging gold atoms exist in the ground states of C2v Al2Au(-) ((3)B1), C2v Al2Au ((2)B1), C2v Al2Au2(-) ((2)A1), C2v Al2Au2 ((1)A1), Cs Al2Au3(-) ((1)A'), and D3h Al2Au3 ((2)A1), which prove to possess an Al-Au-Al τ bond. For BAlAun(0/-) (n = 1-3) mixed clusters, bridging B-Au-Al units only exist in Cs BAlAu3(-) ((1)A') and Cs BAlAu3 ((2)A'), whereas Cs BAlAu(-) ((3)A''), Cs BAlAu ((2)A''), Cs BAlAu2(-) ((2)A'), and Cs BAlAu2 ((1)A') do not possess a bridging gold, as demonstrated by the fact that B-Al and B-Au exhibit significantly stronger electronic interaction than Al-Au in the same clusters. Orbital analyses indicate that Au 6s contributes approximately 98%-99% to the Au-based orbital in these Al-Au-Al/B-Au-Al interactions, whereas Au 5d contributes 1%-2%. The adiabatic and vertical detachment energies of Al2Aun(-) (n = 1-3) are calculated to facilitate future experimental characterizations. The results obtained in this work establish an interesting τ bonding model (Al-Au-Al/B-Au-Al) for electron-deficient systems in which Au 6s plays a major factor.

17.
Anal Chim Acta ; 1269: 341392, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290851

RESUMEN

MicroRNAs (miRNAs) research in cancer diagnosis is expanding, on account of miRNAs were demonstrated to be key indicator of gene expression and hopeful candidates for biomarkers. In this study, a stable miRNA-let-7a fluorescent biosensor was successfully designed based on an exonuclease Ⅲ-assisted two-stage strand displacement reaction (SDR). First, an entropy-driven SDR containing a three-chain structure of the substrate is used in our designed biosensor, leading to reduce the reversibility of the target recycling process in each step. The target acts on the first stage to start the entropy-driven SDR, which generates the trigger used to stimulate the exonuclease Ⅲ-assisted SDR in the second stage. At the same time, we design a SDR one-step amplification strategy as a comparison. Expectly, this developed two-stage strand displacement system has a low detection limit of 25.0 pM as well as a broad detection range of 4 orders of magnitude, making it more sensitive than the SDR one-step sensor, whose detection limit is 0.8 nM. In addition, this sensor has high specificity across members of the miRNA family. Therefore, we can take advantage of this biosensor to promote miRNA research in cancer diagnosis sensing systems.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/química , Entropía , ADN/genética , ADN/química , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico
18.
J Colloid Interface Sci ; 630(Pt A): 879-887, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36306599

RESUMEN

Formic acid (FA), one of the products of biomass conversion and CO2 reduction, has attracted much attention as a renewable liquid hydrogen carrier with a high hydrogen content (4.4 wt%). Searching for efficient catalysts to realize hydrogen evolution from FA are highly desired but challenging. Herein, ultrafine and mono-dispersed Pd-Cr(OH)3 nanoparticles (1.3 nm) loaded on amine-functionalized mesoporous silica (AFMS) have been prepared and applied as an effective catalyst for rapid hydrogen production from additive-free FA. The as-synthesized Pd-Cr(OH)3/AFMS catalysts exhibited efficient catalytic activity and 100% hydrogen selectivity and conversion toward FA dehydrogenation reaction without additives, giving an initial TOF value of 3112 h-1 at 323 K, which is comparable to most of the highly efficient heterogeneous catalysts reported so far under similar reaction conditions. This work provides a feasible idea for the design metal hydroxide-modified Pd-based efficient heterogeneous catalyst, which is expected to enhance the application of FA in fuel cells.


Asunto(s)
Nanopartículas del Metal , Paladio , Dióxido de Silicio , Aminas , Hidrógeno , Hidróxidos
19.
J Colloid Interface Sci ; 645: 676-684, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37167916

RESUMEN

Formic acid (FA), a high-value product of CO2 hydrogenation and biomass conversion, is considered a promising liquid organic hydrogen carrier for its high hydrogen content, easy accessibility, and relative stability. The development of an efficient heterogeneous catalyst toward FA dehydrogenation and Cr(VI) reduction by FA is needed to boost its sluggish kinetics but still remains a challenge. Herein, uniformly dispersed subnanometric PdAu alloy clusters (i.e., 0.9 nm) were successfully prepared and confined by amine-functionalized carbon bowls (ACB). By virtue of the tiny size and abundant active sites of PdAu clusters, the promotional effect of surface amine groups, and electronic interaction between subnanometric PdAu clusters and support, this as-prepared PdAu/ACB catalyst exhibits superior catalytic property for additive-free FA dehydrogenation (turnover frequency, 10597 h-1 at 323 K) and Cr(VI) reduction (rate constant, 0.47 min-1 at 298 K) under mild conditions, higher than most of the catalysts reported so far. This study offers insight into the design of efficient and durable catalysts for various catalytic applications in energy and environment.

20.
Chem Commun (Camb) ; 59(81): 12116-12119, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37740271

RESUMEN

Bimetallic CoPt alloy nanoparticles (NPs) immobilized on CeO2 nanorods (CoPt/CeO2) were synthesized by a facile wet-chemistry reduction method, which showed the highest catalytic efficiency reported to date for the complete dehydrogenation of hydrazine borane with a high TOF value of up to 5454 h-1 at 323 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA