RESUMEN
Malvaceae comprise some 4,225 species in 243 genera and nine subfamilies and include economically important species, such as cacao, cotton, durian, and jute, with cotton an important model system for studying the domestication of polyploids. Here, we use chromosome-level genome assemblies from representatives of five or six subfamilies (depending on the placement of Ochroma) to differentiate coexisting subgenomes and their evolution during the family's deep history. The results reveal that the allohexaploid Helicteroideae partially derive from an allotetraploid Sterculioideae and also form a component of the allodecaploid Bombacoideae and Malvoideae. The ancestral Malvaceae karyotype consists of 11 protochromosomes. Four subfamilies share a unique reciprocal chromosome translocation, and two other subfamilies share a chromosome fusion. DNA alignments of single-copy nuclear genes do not yield the same relationships as inferred from chromosome structural traits, probably because of genes originating from different ancestral subgenomes. These results illustrate how chromosome-structural data can unravel the evolutionary history of groups with ancient hybrid genomes.
Asunto(s)
Genoma de Planta , Gossypium , Genoma de Planta/genética , Gossypium/genética , Genómica/métodos , Poliploidía , Cariotipo , Evolución MolecularRESUMEN
Cellular ionic concentrations are a central factor orchestrating host innate immunity, but no pathogenic mechanism that perturbs host innate immunity by directly targeting metal ions has yet been described. Here, we report a unique virulence strategy of Yersinia pseudotuberculosis (Yptb) involving modulation of the availability of Mn2+, an immunostimulatory metal ion in host cells. We showed that the Yptb type VI secretion system (T6SS) delivered a micropeptide, TssS, into host cells to enhance its virulence. The mutant strain lacking TssS (ΔtssS) showed substantially reduced virulence but induced a significantly stronger host innate immune response, indicating an antagonistic role of this effector in host antimicrobial immunity. Subsequent studies revealed that TssS is a Mn2+-chelating protein and that its Mn2+-chelating ability is essential for the disruption of host innate immunity. Moreover, we showed that Mn2+ enhances the host innate immune response to Yptb infection by activating the stimulator of interferon genes (STING)-mediated immune response. Furthermore, we demonstrated that TssS counteracted the cytoplasmic Mn2+ increase to inhibit the STING-mediated innate immune response by sequestering Mn2+ Finally, TssS-mediated STING inhibition sabotaged bacterial clearance in vivo. These results reveal a previously unrecognized bacterial immune evasion strategy involving modulation of the bioavailability of intracellular metal ions and provide a perspective on the role of the T6SS in pathogenesis.
Asunto(s)
Inmunidad Innata , Manganeso/metabolismo , Proteínas de la Membrana/metabolismo , Sistemas de Secreción Tipo VI , Animales , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Transporte de Proteínas , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/patogenicidadRESUMEN
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is activated by infections of bacteria, fungi, viruses and parasites and mediated cellular and humoral immune responses. In the pea aphid Acyrthosiphon pisum little is known about the function of JAK/STAT signaling in its immune system. In this study, we first showed that expression of genes in the JAK/STAT signaling, including the receptors Domeless1/2, Janus kinase (JAK) and transcriptional factor Stat92E, is up-regulated upon bacteria Escherichia coli and Staphylococcus aureus and fungus Beauveria bassiana infections. After knockdown of expression of these genes by means of dsRNA injection, the aphids harbored more bacteria and suffered more death after infected with E. coli and S. aureus, but showed no significant change after B. bassiana infection. Our study suggests the JAK/STAT signaling contributes to the defense against bacterial infection in the pea aphid.
Asunto(s)
Áfidos , Quinasas Janus , Factores de Transcripción STAT , Transducción de Señal , Animales , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Staphylococcus aureus/fisiología , Escherichia coli , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Beauveria/fisiologíaRESUMEN
Compared to other insects, the pea aphid Acyrthosiphon pisum has a reduced immune system with an absence of genes coding for a lot of immunity-related molecules. Notably, nitric oxide synthase (NOS), which catalyses the synthesis of nitric oxide (NO), is present in the pea aphid. However, the role of NO in the immune system of pea aphid remains unclear. In this study, we explored the role of NO in the defence of the pea aphid against bacterial infections and found that the NOS gene of the pea aphid responded to an immune challenge, with the expression of ApNOS observably upregulated after bacterial infections. Knockdown of ApNOS using RNA interference or inhibition of NOS activity increased the number of live bacterial cells in aphids and the mortality of aphids after bacterial infection. Conversely, the increase in NO level in aphids using NO donor inhibited the bacterial growth, increased the survival of bacteria-infected aphids, and upregulated immune genes, such as Toll pathway and phagocytosis related genes. Thus, NO promotes immune responses and plays an important role in the immune system of pea aphid.
Asunto(s)
Áfidos , Infecciones Bacterianas , Animales , Áfidos/genética , Pisum sativum , Interferencia de ARN , Óxido Nítrico Sintasa/genética , Infecciones Bacterianas/genéticaRESUMEN
Graphynes (GYs) are a novel type of carbon allotrope composed of sp and sp2 hybridized carbon atoms, boasting both a planar conjugated structure akin to graphene and a pore-like configuration in three-dimensional space. Graphdiyne (GDY), the first successfully synthesized member of GYs family, has gained much interest due to its fascinating electrochemical properties including a greater theoretical capacity, high charge mobility and advanced electronic transport properties, making it a promising material for energy storage applications for lithium-ion and hydrogen storage. Various methods, including heteroatom substitution, embedding, strain, and nanomorphology control, have been employed to further enhance the energy storage performance of GDY. Despite the potential of GDY in energy storage applications, there are still challenges to overcome in scaling up mass production. This review summarizes recent progress in the synthesis and application of GDY in lithium-ion and hydrogen storage, highlighting the obstacles faced in large-scale commercial application of GDY-based energy storage devices. Suggestions on possible solutions to overcome these hurdles have also been provided. Overall, the unique properties of GDY make it a promising material for energy storage applications in lithium-ion and hydrogen storage devices. The findings presented here will inspire further development of energy storage devices utilizing GDY.
RESUMEN
BACKGROUND: Multiple chronic conditions (MCC) require complex patient-centered approaches with effective provider-patient communication. OBJECTIVE: To describe trends in patient perceptions of provider-patient communication during non-emergency care and identify associated racial disparities in US older adults with MCC. DESIGN, SETTING, PARTICIPANTS: Observational study using pooled US Medical Expenditure Panel Survey (2013-2019) data included adults > 65 with two or more chronic conditions. MAIN MEASURES: Provider-patient communication was measured by four indicators (how often their doctor explained things clearly, listened carefully, showed respect, and spent enough time with them). The primary outcomes were the annual rates of reporting "always" for the communication indicators. Cochran-Armitage trend tests examined the trends of reporting "always" and associated racial disparities. Multivariable logistic regression identified racial and other factors associated with respondents choosing "always" for one or more categories for provider-patient communication, defined as positive communication. RESULTS: Among 9758 older adults with MCC, declining trends for positive communication were shown across all provider-patient communication categories during 2013 to 2019 (p<0.001). The greatest decrease occurred in "always listening carefully", from 68.6% in 2013 to 59.1% in 2019 (p<0.001). The declining trends of four communication measures in non-Hispanic Whites with MCC were significant (p<0.001). Older adults from Hispanic or Non-Hispanic Black racial backgrounds were 28 to 51% more likely to report "always" for the four indicators of provider-patient communication than non-Hispanic Whites after adjusting for respondents' characteristics. CONCLUSION: The rates of "always" reporting positive communication with providers significantly declined from 2013 to 2019 in older adults with MCC, particularly in non-Hispanic Whites. Hispanics and non-Hispanic Blacks were more likely to report positive communication with providers than other races.
Asunto(s)
Afecciones Crónicas Múltiples , Anciano , Humanos , Comunicación , Disparidades en Atención de Salud , Hispánicos o Latinos , Grupos Raciales , Estados Unidos/epidemiología , Blanco , Negro o AfroamericanoRESUMEN
We present an integrated analysis of the clinical measurements, immune cells, and plasma lipidomics of 2000 individuals representing different age stages. In the study, we explore the interplay of systemic lipids metabolism and circulating immune cells through in-depth analysis of immune cell phenotype and function in peripheral dynamic lipids environment. The population makeup of circulation lymphocytes and lipid metabolites changes dynamically with age. We identified a major shift between young group and middle age group, at which point elevated, immune response is accompanied by the elevation of specific classes of peripheral phospholipids. We tested the effects in mouse model and found that 10-month-dietary added phospholipids induced T-cell senescence. However, the chronic malignant disease, the crosstalk between systemic metabolism and immunity, is completely changed. In cancer patients, the unusual plasma cholesteryl esters emerged, and free fatty acids decreased. The study reveals how immune cell classes and peripheral metabolism coordinate during age acceleration and suggests immune senescence is not isolated, and thus, system effect is the critical point for cell- and function-specific immune-metabolic targeting. ⢠The study identifies a major shift of immune phenotype between young group and middle age group, and the immune response is accompanied by the elevation of specific classes of peripheral phospholipids; ⢠The study suggests potential implications for translational studies such as using metabolic drug to regulate immune activity.
Asunto(s)
Fosfolípidos , Agotamiento de Células T , Persona de Mediana Edad , Ratones , Animales , Humanos , Fosfolípidos/análisis , Fosfolípidos/metabolismo , Ácidos Grasos/metabolismo , Ésteres del ColesterolRESUMEN
Proteolytic activation of phenoloxidase (PO) and the cytokine Spätzle during immune responses of insects is mediated by a network of hemolymph serine proteases (HPs) and noncatalytic serine protease homologs (SPHs) and inhibited by serpins. However, integration and conservation of the system and its control mechanisms are not fully understood. Here we present biochemical evidence that PO-catalyzed melanin formation, Spätzle-triggered Toll activation, and induced synthesis of antimicrobial peptides are stimulated via hemolymph (serine) protease 5 (HP5) in Manduca sexta Previous studies have demonstrated a protease cascade pathway in which HP14 activates proHP21; HP21 activates proPAP2 and proPAP3, which then activate proPO in the presence of a complex of SPH1 and SPH2. We found that both HP21 and PAP3 activate proHP5 by cleavage at ESDR176*IIGG. HP5 then cleaves proHP6 at a unique site of LDLH112*ILGG. HP6, an ortholog of Drosophila Persephone, activates both proHP8 and proPAP1. HP8 activates proSpätzle-1, whereas PAP1 cleaves and activates proPO. HP5 is inhibited by Manduca sexta serpin-4, serpin-1A, and serpin-1J to regulate its activity. In summary, we have elucidated the physiological roles of HP5, a CLIPB with unique cleavage specificity (cutting after His) that coordinates immune responses in the caterpillar.
Asunto(s)
Hemolinfa , Proteínas de Insectos , Manduca , Serina Proteasas , Animales , Hemolinfa/enzimología , Hemolinfa/inmunología , Proteínas de Insectos/inmunología , Proteínas de Insectos/metabolismo , Manduca/enzimología , Manduca/inmunología , Manduca/metabolismo , Serina Proteasas/inmunología , Serina Proteasas/metabolismo , Transducción de Señal , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismoRESUMEN
BACKGROUND: Eudicots are the most diverse group of flowering plants that compromise five well-defined lineages: core eudicots, Ranunculales, Proteales, Trochodendrales, and Buxales. However, the phylogenetic relationships between these five lineages and their chromosomal evolutions remain unclear, and a lack of high-quality genome analyses for Buxales has hindered many efforts to address this knowledge gap. RESULTS: Here, we present a high-quality chromosome-level genome of Buxus austro-yunnanensis (Buxales). Our phylogenomic analyses revealed that Buxales and Trochodendrales are genetically similar and classified as sisters. Additionally, both are sisters to the core eudicots, while Ranunculales was found to be the first lineage to diverge from these groups. Incomplete lineage sorting and hybridization were identified as the main contributors to phylogenetic discordance (34.33%) between the lineages. In fact, B. austro-yunnanensis underwent only one whole-genome duplication event, and collinear gene phylogeny analyses suggested that separate independent polyploidizations occurred in the five eudicot lineages. Using representative genomes from these five lineages, we reconstructed the ancestral eudicot karyotype (AEK) and generated a nearly gapless karyotype projection for each eudicot species. Within core eudicots, we recovered one common chromosome fusion event in asterids and malvids, respectively. Further, we also found that the previously reported fused AEKs in Aquilegia (Ranunculales) and Vitis (core eudicots) have different fusion positions, which indicates that these two species have different karyotype evolution histories. CONCLUSIONS: Based on our phylogenomic and karyotype evolution analyses, we revealed the likely relationships and evolutionary histories of early eudicots. Ultimately, our study expands genomic resources for early-diverging eudicots.
Asunto(s)
Buxus , Magnoliopsida , Buxus/genética , Evolución Molecular , Genoma de Planta , Cariotipo , Magnoliopsida/genética , FilogeniaRESUMEN
The prophenoloxidase (PPO) activation and Toll antimicrobial peptide synthesis pathways are two critical immune responses in the insect immune system. The activation of these pathways is mediated by the cascade of serine proteases, which is negatively regulated by serpins. In this study, we identified a typical serpin, BmSerpin-4, in silkworms, whose expression was dramatically up-regulated in the fat body and hemocytes after bacterial infections. The pre-injection of recombinant BmSerpin-4 remarkably decreased the antibacterial activity of the hemolymph and the expression of the antimicrobial peptides (AMPs) gloverin-3, cecropin-D, cecropin-E, and moricin in the fat body under Micrococcus luteus and Yersinia pseudotuberculosis serotype O: 3 (YP III) infection. Meanwhile, the inhibition of systemic melanization, PO activity, and PPO activation by BmSerpin-4 was also observed. Hemolymph proteinase 1 (HP1), serine protease 2 (SP2), HP6, and SP21 were predicted as the candidate target serine proteases for BmSerpin-4 through the analysis of residues adjacent to the scissile bond and comparisons of orthologous genes in Manduca sexta. This suggests that HP1, SP2, HP6, and SP21 might be essential in the activation of the serine protease cascade in both the Toll and PPO pathways in silkworms. Our study provided a comprehensive characterization of BmSerpin-4 and clues for the further dissection of silkworm PPO and Toll activation signaling.
Asunto(s)
Bombyx , Catecol Oxidasa , Cecropinas , Precursores Enzimáticos , Serpinas , Animales , Serpinas/genética , Serina Endopeptidasas , Serina Proteasas/genética , Proteínas Cromosómicas no HistonaRESUMEN
Poly(vinylidene fluoride) was grafted with maleic anhydride through reactive extrusion by using diisopropyl benzene peroxide as an initiator and 9-vinyl anthracene as a stabilizer. Effects of various parameters on grafting degree were investigated including the amounts of monomer, initiator and stabilizer. The maximum extent of grafting achieved was 0.74%. The graft polymers were characterized using FTIR, water contact angle, thermal, mechanical and XRD studies. Improved hydrophilic and mechanical properties were observed for graft polymers.
RESUMEN
The frequent mutation of KRAS oncogene in some of the most lethal human cancers has spurred incredible efforts to develop KRAS inhibitors, yet only one covalent inhibitor for the KRASG12C mutant has been approved to date. New venues to interfere with KRAS signaling are desperately needed. Here, we report a "localized oxidation-coupling" strategy to achieve protein-specific glycan editing on living cells for disrupting KRAS signaling. This glycan remodeling method exhibits excellent protein and sugar specificity and is applicable to different donor sugars and cell types. Attachment of mannotriose to the terminal galactose/N-acetyl-D-galactosamine epitopes of integrin αv ß3 , a membrane receptor upstream of KRAS, blocks its binding to galectin-3, suppresses the activation of KRAS and downstream effectors, and mitigates KRAS-driven malignant phenotypes. Our work represents the first successful attempt to interfere with KRAS activity by manipulating membrane receptor glycosylation.
Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Neoplasias Pulmonares/patología , Mutación , Polisacáridos , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de SeñalRESUMEN
Different from holometabolous insects, the hemipteran species such as pea aphid Acyrthosiphon pisum exhibit reduced immune responses with the absence of the genes coding for antimicrobial peptide (AMP), immune deficiency (IMD), peptidoglycan recognition proteins (PGRPs), and other immune-related molecules. Prior studies have proved that phenoloxidase (PO)-mediated melanization, hemocyte-mediated phagocytosis, and reactive oxygen species (ROS) participate in pea aphid defense against bacterial infection. Also, the conserved signaling, Jun N-terminal kinase (JNK) pathway, has been suggested to be involved in pea aphid immune defense. However, the precise role of the JNK signaling, its interplay with other immune responses and its regulation in pea aphid are largely unknown. In this study, using in vitro biochemical assays and in vivo bioassays, we demonstrated that the JNK pathway regulated hemolymph PO activity, hydrogen peroxide concentration and hemocyte phagocytosis in bacteria infected pea aphids, suggesting that the JNK pathway plays a central role in regulating immune responses in pea aphid. We further revealed the JNK pathway is regulated by microRNA-184 in response to bacterial infection. It is possible that in common the JNK pathway plays a key role in immune system of hemipteran insects and microRNA-184 regulates the JNK pathway in animals.
Asunto(s)
Áfidos/inmunología , Proteínas de Insectos/inmunología , MAP Quinasa Quinasa 4/inmunología , MicroARNs/inmunología , Transducción de Señal/inmunología , Animales , Áfidos/genética , Proteínas de Insectos/genética , MAP Quinasa Quinasa 4/genética , MicroARNs/genética , Fagocitosis/genética , Transducción de Señal/genéticaRESUMEN
Isosteviol has been indicated as a cardiomyocyte protector. However, the underlying mechanism remains unclear. Thus, we sought to confirm the protective effect of isosteviol after myocardial infarction in a model of permanent coronary artery occlusion and investigate the potential proangiogenic activity in vitro and in vivo. A 4-week permanent coronary artery occlusion rat model was generated, and the protective effect of isosteviol was evaluated by echocardiographic imaging and hemodynamics assays. The coronary capillary density was tested by immunochemistry and micro-computed tomography (µCT) imaging. The effect of isosteviol on endothelial cells was determined in human umbilical vein endothelial cells (HUVECs) in vitro and Tg (kdrl: EGFP) zebrafish in vivo. We also examined the expression of related transcription factors by real-time polymerase chain reaction (RT-qPCR). Isosteviol increased ejection fraction (EF), fractional shortening (FS), cardiac systolic index (CI), maximum rate of increase of left ventricular pressure (Max dp/dt), and left ventricular systolic pressure (LVSP) by 32%, 40%, 25%, 26%, and 10%, respectively, in permanent coronary artery occlusion rats. Interestingly, it also promoted coronary capillary density by 2.5-fold. In addition, isosteviol promoted the proliferation and branching of HUVECs in vitro. It also rescued intersegmental vessel (ISV) development and improved endothelial cell proliferation by approximately fivefold (4-6) in zebrafish embryos in vivo. Isosteviol also upregulated the expression of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGFA) in zebrafish by fourfold and 3.5-fold, respectively. Our findings suggest that isosteviol is a proangiogenic agent and that this activity is related to its protective effects against myocardial ischemia. After using the permanent coronary artery occlusion model, we demonstrated that isosteviol promotes angiogenesis directly and increases capillary density in myocardial ischemia rats. Isosteviol promotes angiogenesis in zebrafish in vivo and increases vascular endothelial cell proliferation in HUVECs and zebrafish. The angiogenesis activity of isosteviol may be correlated with VEGFA and HIF-1α signaling.
Asunto(s)
Infarto del Miocardio , Factor A de Crecimiento Endotelial Vascular , Animales , Diterpenos de Tipo Kaurano , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neovascularización Fisiológica , Ratas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Microtomografía por Rayos X , Pez Cebra/metabolismoRESUMEN
OBJECTIVE: Primary aldosteronism (PA) is a common form of secondary hypertension. Adrenal venous sampling (AVS) is the gold standard for subtyping PA. This study aimed to determine whether there is a difference between immunoassays and liquid chromatography-mass spectrometry (LC-MS/MS) methods for measuring cortisol levels that affect the judgement of AVS. DESIGN: This was a retrospective study. PATIENTS: Included 72 patients who were diagnosed with PA and had undergone AVS. MEASUREMENTS: Patients were grouped according to whether they received adrenocorticotropic hormone (ACTH) stimulation during AVS, and the cortisol results were measured using immunoassay and LC-MS/MS. RESULTS: There were 48 patients in the without ACTH stimulation group and 24 in the post-ACTH stimulation group during AVS (bilateral adrenal vein cannulation success rate, 56.25% vs. 83.33%). ACTH stimulation was beneficial for increasing the success rate of AVS (p < .001). Immunoassays were linearly correlated with LC-MS/MS when cortisol concentrations were <1750 nmol/L (r = .959, p < .001). When cortisol concentrations were >17,500 nmol/L, no correlation was found between the two methods (p = .093). The two methods were consistent for the detection of cortisol for evaluating the success of cannulation for AVS. Five percent of patients showed discordant lateralization of aldosterone production according to the cortisol LC-MS/MS and immunoassay results in the without ACTH group, and 15% showed discordant lateralization in the post-ACTH group. CONCLUSIONS: The immunoassay method can be used to determine whether cannulation is successful. The final decision for lateralization may be more appropriate based on LC-MS/MS results.
Asunto(s)
Hidrocortisona , Hiperaldosteronismo , Glándulas Suprarrenales/irrigación sanguínea , Aldosterona , Cromatografía Liquida , Errores Diagnósticos , Humanos , Hidrocortisona/análisis , Hiperaldosteronismo/diagnóstico , Estudios Retrospectivos , Espectrometría de Masas en TándemRESUMEN
Aeromonas hydrophila was a common bacterial pathogen in aquaculture resulting in considerable losses to the striped catfish aquaculture industry. As an emergent antimicrobial peptide (AMP), NK-lysin (NKL) had activity against various microorganisms. However, the antibacterial activity of NKL from striped catfish (Pangasianodon hypophthalmus) both in vitro and vivo remains unclear. In this study, the cDNA sequence of P. hypophthalmus NK-lysin gene (PhNK-lysin) was cloned and characterized. The amino acid sequence of PhNK-lysin contains a signal peptide sequence of 17 amino acid (aa) residues and a mature peptide composed of 130 aa. The saposin B domain of mature peptide comprised six conserved cysteines forming three putative disulfide bonds. Phylogenetic analysis revealed that the PhNK-lysin was most closely related to that of the channel catfish (Ictalurus punctatus) NK-lysin. The transcriptional levels of the PhNK-lysin were significantly upregulated in response to A. hydrophila infection in various tissues including heart, liver, spleen, head kidney, trunk kidney and gill. The synthetic PhNK-lysin-derived peptide consisting of 38aa showed antibacterial activity against Vibrio harveii, Aeromonas hydrophila and Escherichia coli. The MIC for V. harveii, A. hydrophila and E. coli were 15.625 µM, 250 µM and 31.25 µM respectively. Besides, the synthetic PhNK-lysin decreased the bacterial load of liver and trunk kidney in vivo as well as increased the survival rate of A. hydrophila infected striped catfish. Hence, these data suggest that PhNK-lysin had antimicrobial effect and protects the host from pathogenic infection.
Asunto(s)
Bagres , Enfermedades de los Peces , Ictaluridae , Aeromonas hydrophila , Animales , Antibacterianos/farmacología , Bagres/genética , Escherichia coli , Enfermedades de los Peces/microbiología , Ictaluridae/genética , Filogenia , ProteolípidosRESUMEN
OBJECTIVE: To observe whether ultrasound-guided stellate ganglion block (SGB) can effectively relieve migraine pain and improve the quality of migraine patients' life. METHODS: 81 patients with migraines were enrolled in this study. The patients received SGB with 6 ml of 0.15% ropivacaine once every week for four times. Migraine was assessed with the Migraine Disability Assessment Scale (MIDAS) at baseline and three-months follow-up (Tm). The numerical rating scale (NRS) score at baseline, one day after treatment (Td) and Tm, the frequency of analgesic use in 3 months and the side effects were also recorded at the same time. RESULTS: The NRS score of migraine subjects decreased significantly from 7.0 (2.0) to 3.0 (1.0) at Td and 2.0 (2.0) at Tm (vs baseline, P < 0.01). The MIDAS total scores were 14.0 (10.5) at baseline and 7.0 (4.5) at Tm (P < 0.001). During the three months, the frequency of analgesic consumption was decreased from 6.2 ± 2.8 to 1.9 ± 1.8. There were no serious side effects. CONCLUSIONS: This study confirmed that ultrasound-guided SGB is an effective method to treat migraines. This technique can reduce pain and disability and then improve the quality of life of patients with migraines.
Asunto(s)
Bloqueo Nervioso Autónomo , Trastornos Migrañosos , Bloqueo Nervioso Autónomo/métodos , Humanos , Trastornos Migrañosos/tratamiento farmacológico , Calidad de Vida , Ganglio Estrellado/diagnóstico por imagen , Ultrasonografía IntervencionalRESUMEN
Bioaerosols can be generated in wastewater treatment plants (WWTPs), they may contain pathogenic bacteria, cause disease transmission, and attract the public's attention. In this study, bioaerosols were collected from seven different stages of an A²O process WWTP. The component characteristics were analyzed by bacterial culture and high-throughput sequencing. The correlations in different processes were analyzed, and the health risks of bioaerosols produced were evaluated. The results showed that the concentration range of bacteria aerosol in the WWTP was 75 CFU/m³-706 CFU/m³. The concentration range of total suspended particles was 111.13 µg/m³-211.67 µg/m³, the primary water-soluble ions were Ca²âº and Clâ». In the air of each stage, the main bacteria were Cetobacterium, Bacteroides, Romboutsia, and the fungi were Fusarium, Alternaria, and Aspergillus. The dominant bacteria in the wastewater were Cetobacterium, Romboutsia, Stenotrophobacter, and the fungi were Fusarium, Aspergillus, and Mortierella. The total bacterial concentration and ion concentration in the aerobic section of the biochemical tank were the highest. The results of species composition and principal component analysis showed that the bacterial composition in the air at different processes was similar, while the bacteria in wastewater differed significantly. Among them, the wastewater bacteria in the aerobic section of the biochemical tank were closer to that in the air. Fungal results were similar to bacteria but not prominent. The bioaerosol exposure risk results show that the risk in each stage was acceptable (5.15 ×10â»4-6.47 ×10⻳). However, the exposure risk of bioaerosol was calculated by the total bacterial concentration. In fact, some pathogenic microorganisms such as Escherichia coli and Aspergillus flavus were detected in bioaerosols, which may cause hemorrhagic colitis, cancer and other diseases by swallowing and inhalation. Therefore, the risk might be underestimated and should be a cause of concern.
Asunto(s)
Aguas Residuales , Purificación del Agua , Aerosoles/análisis , Microbiología del Aire , Bacterias , Aguas Residuales/químicaRESUMEN
Described herein is the first application of perfluorinated solvent in the stereoselective formation of O-/S-glycosidic linkages that occurs via a Ferrier rearrangement of acetylated glycals. In this system, the weak interactions between perfluoro-n-hexane and substrates could augment the reactivity and stereocontrol. The initiation of transformation requires only an extremely low loading of resin-H+ and the mild conditions enable the accommodation of a broad spectrum of glycal donors and acceptors. The 'green' feature of this chemistry is demonstrated by low toxicity and easy recovery of the medium, as well as operational simplicity in product isolation.
Asunto(s)
Glicosilación , Estereoisomerismo , Solventes , Estructura Molecular , CatálisisRESUMEN
Bardet-Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy, which is caused by mutations mainly in genes encoding BBSome complex and IFT complex. Here, we reported a 21-year-old female with BBS characterized by three primary features including obesity, retinitis pigmentosa sine pigmento and bilateral renal cysts. She also had some secondary features such as diabetes mellitus, nonalcoholic fatty liver disease, subclinical hypothyroidism and mild conductive hearing damage. Whole exome sequencing revealed two compound heterozygous mutations in exon 2 of the BBS12 gene (c.188delC, p.T63fs and c.1993_1995del, p.665_665del) in this patient. Sanger sequencing showed that her father and mother carried c.188delC (p.T63fs) and c.1993_1995del (p.665_665del) variants, respectively, while her parents were free of BBS-related symptoms. In conclusion, this case reported two novel mutations (c.188delC, p.T63fs and c.1993_1995del, p.665_665del) of the BBS12 gene in a girl presented with BBS, which provides novel genetic resources for studies of the disease. Meanwhile, the BBS case shows the entire development progress from her birth to adulthood, which helps facilitate clinicians' understanding of BBS.