Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Biodivers ; 20(7): e202300086, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37294554

RESUMEN

Mitochondria have emerged as important targets in cancer therapy due to their key role in regulating energy supply, maintaining redox homeostasis, and intrinsic apoptosis. Curcumin (CUR) has shown promise in inhibiting the proliferation and metastasis of cancer cells by inducing apoptosis and arresting cell cycle. However, the clinical application of CUR has been limited by its low stability and poor tumor selectivity. To address these issues, the novel mitochondria-targeted curcumin derivatives were synthesized through the unilateral coupling (CUR-T) or bilateral coupling (CUR-2T) of curcumin's phenolic hydroxy groups with triphenyl phosphorus via ester bond. The aim was to achieve better stability, higher tumor selectivity, and stronger curative efficacy. The results of stability and biological experiments indicated that both stability and cytotoxicity were arranged in descending order of CUR-2T>CUR-T>CUR. In ovarian cancer cells (A2780 cells), CUR-2T showed well-defined preferential selectivity towards cancer cells and exhibited efficient anticancer efficacy due to its superior mitochondria accumulation ability. Subsequently, the mitochondrial redox balance was disrupted, accompanied by increased ROS levels, decreased ATP levels, dissipated MMP, and increased G0 /G1 phase arrest, leading to a higher apoptotic rate. In summary, the results of this study suggest that CUR-2T holds substantial promise for further development as a potential agent for the treatment of ovarian cancer.


Asunto(s)
Antineoplásicos , Curcumina , Neoplasias Ováricas , Humanos , Femenino , Curcumina/farmacología , Curcumina/química , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis , Mitocondrias
2.
Front Pharmacol ; 14: 1124003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969837

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a chronic progressive liver disease with increasing prevalence. Lipophagy is a type of programmed cell death that plays an essential role in maintaining the body's balance of fatty acid metabolism. However, the livers of NAFLD patients are abnormally dysregulated in lipophagy. mTORC1 is a critical negative regulator of lipophagy, which has been confirmed to participate in the process of lipophagy through various complex mechanisms. Therefore, targeting mTORC1 to restore failed autophagy may be an effective therapeutic strategy for NAFLD. This article reviews the main pathways through which mTORC1 participates in the formation of lipophagy and the intervention effect of mTORC1-regulated lipophagy in NAFLD, providing new therapeutic strategies for the prevention and treatment of NAFLD in the future.

3.
J Biomater Sci Polym Ed ; 34(14): 1928-1951, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37060335

RESUMEN

Multidrug resistance (MDR) has emerged as a prominent challenge contributing to the ineffectiveness of chemotherapy in treating non-small cell lung cancer (NSCLC) patients. Currently, mitochondria of cancer cells are identified as a promising target for overcoming MDR due to their crucial role in intrinsic apoptosis pathway and energy supply centers. Here, a two-stage targeted liposome (HA/TT LP/PTX) was successfully developed via a two-step process: PTX-loaded cationic liposome (TT LP/PTX) were formulated by lipid film hydration & ultrasound technique, followed by further coating with natural anionic polysaccharide hyaluronic acid (HA). TT, an amphipathic polymer conjugate of triphenylphosphine (TPP)-tocopheryl polyethylene glycol succinate (TPGS), was used to modify the liposomes for mitochondrial targeting. The average particle size, zeta potential and encapsulation efficiency (EE%) of HA/TT LP/PTX were found to be 153 nm, -30.3 mV and 92.1% based on the optimal prescription of HA/TT LP/PTX. Compared to cationic liposome, HA-coated liposomes showed improved stability and safety, including biological stability in serum, cytocompatibility, and lower hemolysis percentage. In drug-resistant A549/T cells, HA was shown to improve the cellular uptake of PTX through CD44 receptor-mediated endocytosis and subsequent degradation by hyaluronidase (HAase) in endosomes. Following this, the exposure of TT polymer facilitated the accumulation of PTX within the mitochondria. As a result, the function of mitochondria in A549/T cells was disturbed, leading to an increased ROS level, decreased ATP level, dissipated MMP, and increased G2/M phase arrest. This resulted in a higher apoptotic rate and stronger anticancer efficacy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Liposomas , Ácido Hialurónico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Células A549
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA