Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 35(26)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38513275

RESUMEN

The piezoelectric properties of carbon nanotubes (CNTs) doped with boron (B) and nitrogen (N) were studied using the classical molecular dynamics (MD) simulation software package large scale atomic/molecular massively parallel simulator. The interactions among the nanotube atoms C, N, and B were calculated using the Tersoff potential. MD simulations were performed to observe the changes in the piezoelectric coefficient of the doped CNTs under loading conditions like tension, torsion, and a combination of both. We considered a wide range of chirality to determine the influence of structural variation on the piezoelectric effect. The study revealed that B-CNTs exhibit superior piezoelectric coefficients compared to N-CNTs, indicating the significant role of dopant type. Moreover, under tensile loading, zigzag-oriented B-CNTs showed higher piezoelectric coefficients with a maximume33= 0.2441 C m-2, whereas under torsional loading, armchair-oriented B-CNTs showed enhanced response with a maximume36= 0.0564 C m-2. A notable observation was that under combined loading conditions (tensile and torsional), the piezoelectric behavior of the B-CNTs was dependent on the nanotube's chirality and did not yield a linear additive response. The polarization induced under combined loading in most of the doped CNTs is significantly higher than the sum of polarization generated under tensile and torsional loading conditions. This behavior suggests that the overall piezoelectric effect under combined loading can be enhanced, which emphasizes the need for an approach to optimize the mechanical loading condition. The results showcase the potential of B-/N-CNTs to be engineered for efficient performance by demonstrating that tailored mechanical loading can enhance the piezoelectric responses in doped CNTs, opening a pathway for highly functional and efficient nanoscale piezoelectric devices.

2.
Nanotechnology ; 31(40): 405710, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32706767

RESUMEN

The electromechanical response of hexagonal-boron nitride nanosheets (h-BNSs) was studied via molecular dynamics simulations (MDS) with a three-body Tersoff potential force field using a charge-dipole (C-D) potential model. Carbon (C)-doped h-BNSs with triangular, trapezoidal and circular pores were considered. The elastic and piezoelectric coefficients of h-BNSs under tension and shear loading conditions were determined. The induced polarization in h-BNSs was found to depend on the local arrangement of C atoms around B and N atoms, and the polarization increases if C atoms are surrounded by N atoms. This is attributed to the generation of higher dipole moments due to C-N bonds compared with C-B bonds. At ∼5.5% C-doping concentration, the axial piezoelectric coefficient of doped h-BNSs with triangular and trapezoidal pores increased by 18.5% and 3.5%, respectively, while it reduced by 22.5% in the case of circular pores compared to pristine h-BNS. The shear piezoelectric coefficient of C-doped h-BNSs with triangular and trapezoidal pores increased by 20.5% and 1%, respectively, while it reduced by 7% in case of circular pores. Young's moduli of C-doped h-BNSs with triangular, trapezoidal and circular pores increased by 9%, 7.5% and 5.5%, respectively, due to the C-C bonds being stronger than all other bonds. The respective improvements in shear moduli are 8.5%, 5% and 5%. The elastic and piezoelectric properties of armchair h-BNSs were found to be higher than zigzag h-BNSs. The results also reveal that the piezoelectric coefficient increases as doping increases; it reaches its maximum value around 0.41 C m-2 at 12.6% C-doping concentration and then starts decreasing. The present work shows that we can engineer the electromechanical response of h-BNSs via novel pathways such as different types and size of pores as well as C-doping concentration to suit a particular nanoelectromechanical systems (NEMS) application.

3.
J Mol Graph Model ; 119: 108399, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36563644

RESUMEN

In this work, we studied the hydrogen adsorption capabilities of functionalized graphene sheets containing a variety of defects (D-G) via molecular dynamics (MD) simulations that govern the mechanisms involved in hydrogen adsorption. Specifically, the graphene sheets containing monovacancy (MV), Stone-Wales (SW), and multiple double vacancy (DV) defects were functionalized with Ti and N atoms to enhance their hydrogen adsorption capacity. We measured the adsorption capacities of the N-/D-G sheets with varying concentrations of Ti adatoms at 300 K and 77 K temperatures and various pressures. Our study revealed that the increasing concentration of Ti adatoms on the D-G sheets led to a significant improvement in the hydrogen adsorption capacity of the graphene sheets. The DV(III)-G sheets showed the maximum adsorption capacity at 300 K because the DV(III)-G sheets had a small number of large-sized pores that bind hydrogen with high binding energy. Thus, hydrogen remained adsorbed even at higher temperatures (300 K). The N doping on the D-G sheets initially reduced their hydrogen adsorption capabilities; however, the N-D-G sheets enhanced their hydrogen adsorption capacity with the increasing concentrations of Ti adatoms. Compared to all other defect types, the Ti-N-DV(III)-G sheet with a Ti concentration of 10.5% showed a hydrogen uptake of 5.5 wt% at 300 K and 100 bar pressure. Thus, the N doping and Ti implantations improved the hydrogen storage capabilities of the graphene sheets, and these findings helped design solid-state hydrogen storage systems operating at ambient conditions and moderate pressure ranges.


Asunto(s)
Grafito , Grafito/química , Adsorción , Hidrógeno/química , Titanio/química , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA