Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 600(19): 4303-4323, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36082768

RESUMEN

Infants and young children receive the highest exposures to antibiotics globally. Although there is building evidence that early life exposure to antibiotics increases susceptibility to various diseases including gut disorders later in life, the lasting impact of early life antibiotics on the physiology of the gut and its enteric nervous system (ENS) remains unclear. We treated neonatal mice with the antibiotic vancomycin during their first 10 postnatal days, then examined potential lasting effects of the antibiotic treatment on their colons during young adulthood (6 weeks old). We found that neonatal vancomycin treatment disrupted the gut functions of young adult female and male mice differently. Antibiotic-exposed females had significantly longer whole gut transit while antibiotic-treated males had significantly lower faecal weights compared to controls. Both male and female antibiotic-treated mice had greater percentages of faecal water content. Neonatal vancomycin treatment also had sexually dimorphic impacts on the neurochemistry and Ca2+ activity of young adult myenteric and submucosal neurons. Myenteric neurons of male mice were more disrupted than those of females, while opposing changes in submucosal neurons were seen in each sex. Neonatal vancomycin also induced sustained changes in colonic microbiota and lasting depletion of mucosal serotonin (5-HT) levels. Antibiotic impacts on microbiota and mucosal 5-HT were not sex-dependent, but we propose that the responses of the host to these changes are sex-specific. This first demonstration of long-term impacts of neonatal antibiotics on the ENS, gut microbiota and mucosal 5-HT has important implications for gut function and other physiological systems of the host. KEY POINTS: Early life exposure to antibiotics can increase susceptibility to diseases including functional gastrointestinal (GI) disorders later in life. Yet, the lasting impact of this common therapy on the gut and its enteric nervous system (ENS) remains unclear. We investigated the long-term impact of neonatal antibiotic treatment by treating mice with the antibiotic vancomycin during their neonatal period, then examining their colons during young adulthood. Adolescent female mice given neonatal vancomycin treatment had significantly longer whole gut transit times, while adolescent male and female mice treated with neonatal antibiotics had significantly wetter stools. Effects of neonatal vancomycin treatment on the neurochemistry and Ca2+ activity of myenteric and submucosal neurons were sexually dimorphic. Neonatal vancomycin also had lasting effects on the colonic microbiome and mucosal serotonin biosynthesis that were not sex-dependent. Different male and female responses to antibiotic-induced disruptions of the ENS, microbiota and mucosal serotonin biosynthesis can lead to sex-specific impacts on gut function.


Asunto(s)
Sistema Nervioso Entérico , Vancomicina , Animales , Antibacterianos/efectos adversos , Sistema Nervioso Entérico/fisiología , Femenino , Masculino , Ratones , Serotonina/farmacología , Vancomicina/farmacología , Agua
2.
Gastroenterology ; 160(4): 1301-1314.e8, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33227279

RESUMEN

BACKGROUND & AIMS: Although Clostridioides difficile infection (CDI) is known to involve the disruption of the gut microbiota, little is understood regarding how mucus-associated microbes interact with C difficile. We hypothesized that select mucus-associated bacteria would promote C difficile colonization and biofilm formation. METHODS: To create a model of the human intestinal mucus layer and gut microbiota, we used bioreactors inoculated with healthy human feces, treated with clindamycin and infected with C difficile with the addition of human MUC2-coated coverslips. RESULTS: C difficile was found to colonize and form biofilms on MUC2-coated coverslips, and 16S rRNA sequencing showed a unique biofilm profile with substantial cocolonization with Fusobacterium species. Consistent with our bioreactor data, publicly available data sets and patient stool samples showed that a subset of patients with C difficile infection harbored high levels of Fusobacterium species. We observed colocalization of C difficile and F nucleatum in an aggregation assay using adult patients and stool of pediatric patients with inflammatory bowel disease and in tissue sections of patients with CDI. C difficile strains were found to coaggregate with F nucleatum subspecies in vitro; an effect that was inhibited by blocking or mutating the adhesin RadD on Fusobacterium and removal of flagella on C difficile. Aggregation was shown to be unique between F nucleatum and C difficile, because other gut commensals did not aggregate with C difficile. Addition of F nucleatum also enhanced C difficile biofilm formation and extracellular polysaccharide production. CONCLUSIONS: Collectively, these data show a unique interaction of between pathogenic C difficile and F nucleatum in the intestinal mucus layer.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/inmunología , Fusobacterium nucleatum/inmunología , Microbioma Gastrointestinal/inmunología , Adhesinas Bacterianas/genética , Adhesión Bacteriana/inmunología , Biopelículas , Reactores Biológicos/microbiología , Clostridioides difficile/genética , Clostridioides difficile/inmunología , Clostridioides difficile/metabolismo , Infecciones por Clostridium/microbiología , Heces/microbiología , Flagelos/genética , Flagelos/metabolismo , Fusobacterium nucleatum/metabolismo , Células HT29 , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Mucina 2/metabolismo
3.
J Pediatr Gastroenterol Nutr ; 74(2): 227-235, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724447

RESUMEN

OBJECTIVES: Fecal microbiota transplantation (FMT) is arguably the most effective treatment for recurrent Clostridioides difficile infection (rCDI). Clinical reports on pediatric FMT have not systematically evaluated microbiome restoration in patients with co-morbidities. Here, we determined whether FMT recipient age and underlying co-morbidity influenced clinical outcomes and microbiome restoration when treated from shared fecal donor sources. METHODS: Eighteen rCDI patients participating in a single-center, open-label prospective cohort study received fecal preparation from a self-designated (single case) or two universal donors. Twelve age-matched healthy children and four pediatric ulcerative colitis (UC) cases from an independent serial FMT trial, but with a shared fecal donor were examined as controls for microbiome restoration using 16S rRNA gene sequencing of longitudinal fecal specimens. RESULTS: FMT was significantly more effective in rCDI recipients without underlying chronic co-morbidities where fecal microbiome composition in post-transplant responders was restored to levels of healthy children. Microbiome reconstitution was not associated with symptomatic resolution in some rCDI patients who had co-morbidities. Significant elevation in Bacteroidaceae, Bifidobacteriaceae, Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae was consistently observed in pediatric rCDI responders, while Enterobacteriaceae decreased, correlating with augmented complex carbohydrate degradation capacity. CONCLUSION: Recipient background disease was a significant risk factor influencing FMT outcomes. Special attention should be taken when considering FMT for pediatric rCDI patients with underlying co-morbidities.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Niño , Infecciones por Clostridium/terapia , Trasplante de Microbiota Fecal , Heces , Humanos , Morbilidad , Estudios Prospectivos , ARN Ribosómico 16S/genética , Recurrencia , Resultado del Tratamiento
4.
Am J Physiol Gastrointest Liver Physiol ; 318(6): G1042-G1053, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32390463

RESUMEN

The period during and immediately after weaning is an important developmental window when marked shifts in gut microbiota can regulate the maturation of the enteric nervous system (ENS). Because microbiota-derived signals that modulate ENS development are poorly understood, we examined the physiological impact of the broad spectrum of antibiotic, vancomycin-administered postweaning on colonic motility, neurochemistry of enteric neurons, and neuronal excitability. The functional impact of vancomycin on enteric neurons was investigated by Ca2+ imaging in Wnt1-Cre;R26R-GCaMP3 reporter mice to characterize alterations in the submucosal and the myenteric plexus, which contains the neuronal circuitry controlling gut motility. 16S rDNA sequencing of fecal specimens after oral vancomycin demonstrated significant deviations in microbiota abundance, diversity, and community composition. Vancomycin significantly increased the relative family rank abundance of Akkermansiaceae, Lactobacillaceae, and Enterobacteriaceae at the expense of Lachnospiraceae and Bacteroidaceae. In sharp contrast to neonatal vancomycin exposure, microbiota compositional shifts in weaned animals were associated with slower colonic migrating motor complexes (CMMCs) without mucosal serotonin biosynthesis being altered. The slowing of CMMCs is linked to disruptions in the neurochemistry of the underlying enteric circuitry. This included significant reductions in cholinergic and calbindin+ myenteric neurons, neuronal nitric oxide synthase+ submucosal neurons, neurofilament M+ enteric neurons, and increased proportions of cholinergic submucosal neurons. The antibiotic treatment also increased transmission and responsiveness in myenteric and submucosal neurons that may enhance inhibitory motor pathways, leading to slower CMMCs. Differential vancomycin responses during neonatal and weaning periods in mice highlight the developmental-specific impact of antibiotics on colonic enteric circuitry and motility.


Asunto(s)
Colon/inervación , Sistema Nervioso Entérico/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Motilidad Gastrointestinal/efectos de los fármacos , Vancomicina/farmacología , Animales , Antibacterianos/farmacología , Sistema Nervioso Entérico/fisiología , Femenino , Masculino , Ratones , Serotonina/biosíntesis
5.
Gastroenterology ; 157(2): 507-521.e4, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31071306

RESUMEN

BACKGROUND & AIMS: Mood disorders and constipation are often comorbid, yet their shared etiologies have rarely been explored. The neurotransmitter serotonin (5-HT) regulates central nervous system and enteric nervous system (ENS) development and long-term functions, including gastrointestinal (GI) motility and mood. Therefore, defects in neuron production of 5-HT might result in brain and intestinal dysfunction. Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme in 5-HT biosynthesis. A variant of TPH2 that encodes the R441H substitution (TPH2-R441H) was identified in individuals with severe depression. We studied mice with an analogous mutation (TPH2-R439H), which results in a 60%-80% decrease in levels of 5-HT in the central nervous system and behaviors associated with depression in humans. Feeding chow that contains 5-HTP slow release (5-HTP SR) to TPH2-R439H mice restores levels of 5-HT in the central nervous system and reduces depressive-like behaviors. METHODS: We compared the effects of feeding chow, with or without 5-HTP SR, to mice with the TPH2-R439H mutation and without this mutation (control mice). Myenteric and submucosal plexuses were isolated from all 4 groups of mice, and immunocytochemistry was used to quantify total enteric neurons, serotonergic neurons, and 5-HT-dependent subsets of neurons. We performed calcium imaging experiments to evaluate responses of enteric neurons to tryptamine-evoked release of endogenous 5-HT. In live mice, we measured total GI transit, gastric emptying, small intestinal transit, and propulsive colorectal motility. To measure colonic migrating motor complexes (CMMCs), we isolated colons and constructed spatiotemporal maps along the proximodistal length to quantify the frequency, velocity, and length of CMMCs. We measured villus height, crypt perimeter, and relative densities of enterochromaffin and enteroendocrine cells in small intestinal tissue. RESULTS: Levels of 5-HT were significantly lower in enteric neurons from TPH2-R439H mice than from control mice. TPH2-R439H mice had abnormalities in ENS development and ENS-mediated GI functions, including reduced motility and intestinal epithelial growth. Total GI transit and propulsive colorectal motility were slower in TPH2-R439H mice than controls, and CMMCs were slower and less frequent. Villus height and crypt perimeter were significantly decreased in colon tissues from TPH2-R439H mice compared with controls. Administration of 5-HTP SR to adult TPH2-R439H mice restored 5-HT to enteric neurons and reversed these abnormalities. Adult TPH2-R439H mice given oral 5-HTP SR had normalized numbers of enteric neurons, total GI transit, and colonic motility. Intestinal tissue from these mice had normal measures of CMMCs and enteric epithelial growth CONCLUSIONS: In studies of TPH2-R439H mice, we found evidence for reduced release of 5-HT from enteric neurons that results in defects in ENS development and GI motility. Our findings indicate that neuron production of 5-HT links constipation with mood dysfunction. Administration of 5-HTP SR to mice restored 5-HT to the ENS and normalized GI motility and growth of the enteric epithelium. 5-HTP SR might be used to treat patients with intestinal dysfunction associated with low levels of 5-HT.


Asunto(s)
5-Hidroxitriptófano/administración & dosificación , Estreñimiento/tratamiento farmacológico , Depresión/tratamiento farmacológico , Tracto Gastrointestinal/fisiopatología , Serotonina/metabolismo , Animales , Estreñimiento/etiología , Estreñimiento/fisiopatología , Preparaciones de Acción Retardada/administración & dosificación , Depresión/complicaciones , Depresión/genética , Depresión/fisiopatología , Modelos Animales de Enfermedad , Sistema Nervioso Entérico/efectos de los fármacos , Sistema Nervioso Entérico/fisiopatología , Femenino , Motilidad Gastrointestinal/efectos de los fármacos , Motilidad Gastrointestinal/fisiología , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/inervación , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Resultado del Tratamiento , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo
6.
Dig Dis Sci ; 65(3): 818-828, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32056091

RESUMEN

While there are numerous medical comorbidities associated with ASD, gastrointestinal (GI) issues have a significant impact on quality of life for these individuals. Recent findings continue to support the relationship between the gut microbiome and both GI symptoms and behavior, but the heterogeneity within the autism spectrum requires in-depth clinical characterization of these clinical cohorts. Large, diverse, well-controlled studies in this area of research are still needed. Although there is still much to discover about the brain-gut-microbiome axis in ASD, microbially mediated therapies, specifically probiotics and fecal microbiota transplantation have shown promise in the treatment of GI symptoms in ASD, with potential benefit to the core behavioral symptoms of ASD as well. Future research and clinical trials must increasingly consider complex phenotypes in ASD in stratification of large datasets as well as in design of inclusion criteria for individual therapeutic interventions.


Asunto(s)
Trastorno del Espectro Autista/microbiología , Encéfalo/microbiología , Enfermedades Gastrointestinales/microbiología , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Animales , Trastorno del Espectro Autista/psicología , Trastorno del Espectro Autista/terapia , Encéfalo/fisiología , Trasplante de Microbiota Fecal/tendencias , Enfermedades Gastrointestinales/psicología , Enfermedades Gastrointestinales/terapia , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/fisiología , Humanos , Probióticos/administración & dosificación
7.
J Pediatr ; 204: 126-133.e2, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30297287

RESUMEN

OBJECTIVES: To summarize evidence regarding microbial dysbiosis of the airway associated with bronchopulmonary dysplasia (BPD) and to explore heterogeneity among studies. STUDY DESIGN: We included studies that evaluated the airway microbiome in preterm infants who developed BPD using culture-independent molecular techniques and reported alpha- and beta-diversity metrics and microbial profiles. RESULTS: The 6 included studies had substantial clinical and methodological heterogeneity. Most studies reported the presence of an airway microbiome early after birth and an evolution in the first weeks of life with increasing bacterial loads. The early airway microbiome was dominated by Staphylococcus and Ureaplasma spp. Two studies reported differences in alpha- and beta- diversity indices in preterm infants with BPD compared with those who did not develop BPD. Increased microbial community turnover, changes in the relative abundance of Proteobacteria and Firmicutes, and decreased Lactobacilli were reported with BPD progression. Most included infants were born by cesarean delivery, and a majority were exposed to postnatal antibiotics. No data regarding feeding human milk or correlations with the development of gut microbiota (gut-lung axis) were available. CONCLUSIONS: Microbial dysbiosis may be associated with BPD progression and severity, and further study of microbiome optimization in preterm infants at risk for BPD is warranted.


Asunto(s)
Displasia Broncopulmonar/microbiología , Disbiosis/complicaciones , Microbiota/genética , Sistema Respiratorio/microbiología , Disbiosis/genética , Humanos , Recién Nacido , Recien Nacido Prematuro
8.
J Infect Dis ; 215(11): 1648-1652, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28383686

RESUMEN

Hypervirulent disease due to group A Streptococcus (GAS) can result from strains with mutations that enhance virulence gene expression but reduce subsequent transmission. We used whole-genome sequencing to investigate intrafamilial spread among 4 siblings of infection due to a hypervirulent GAS strain that resulted in a fatality. All invasive and pharyngeal GAS isolates had an identical mutation in a gene encoding a key regulatory protein that yielded a hyperinvasive phenotype. These data challenge the prevailing theory of reduced transmission induced by mutations that lead to hypervirulent GAS by showing that spread of hypervirulent GAS may lead to clusters of invasive disease.


Asunto(s)
Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/transmisión , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidad , Antibacterianos/uso terapéutico , Antígenos Bacterianos/genética , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Bacteriemia/transmisión , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Portadoras/genética , Preescolar , Resultado Fatal , Femenino , Histidina Quinasa , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Infecciones Estreptocócicas/tratamiento farmacológico
9.
Infect Immun ; 85(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28760934

RESUMEN

Integration of antibiotic and probiotic therapy has the potential to lessen the public health burden of antimicrobial-associated diseases. Clostridium difficile infection (CDI) represents an important example where the rational design of next-generation probiotics is being actively pursued to prevent disease recurrence. Because intrinsic resistance to clinically relevant antibiotics used to treat CDI (vancomycin, metronidazole, and fidaxomicin) is a desired trait in such probiotic species, we screened several bacteria and identified Lactobacillus reuteri to be a promising candidate for adjunct therapy. Human-derived L. reuteri bacteria convert glycerol to the broad-spectrum antimicrobial compound reuterin. When supplemented with glycerol, strains carrying the pocR gene locus were potent reuterin producers, with L. reuteri 17938 inhibiting C. difficile growth at a level on par with the level of growth inhibition by vancomycin. Targeted pocR mutations and complementation studies identified reuterin to be the precursor-induced antimicrobial agent. Pathophysiological relevance was demonstrated when the codelivery of L. reuteri with glycerol was effective against C. difficile colonization in complex human fecal microbial communities, whereas treatment with either glycerol or L. reuteri alone was ineffective. A global unbiased microbiome and metabolomics analysis independently confirmed that glycerol precursor delivery with L. reuteri elicited changes in the composition and function of the human microbial community that preferentially targets C. difficile outgrowth and toxicity, a finding consistent with glycerol fermentation and reuterin production. Antimicrobial resistance has thus been successfully exploited in the natural design of human microbiome evasion of C. difficile, and this method may provide a prototypic precursor-directed probiotic approach. Antibiotic resistance and substrate bioavailability may therefore represent critical new determinants of probiotic efficacy in clinical trials.


Asunto(s)
Antibacterianos/biosíntesis , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/prevención & control , Gliceraldehído/análogos & derivados , Glicerol/administración & dosificación , Limosilactobacillus reuteri/metabolismo , Probióticos , Propano/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/inmunología , Infecciones por Clostridium/terapia , Descubrimiento de Drogas/métodos , Farmacorresistencia Bacteriana , Heces/microbiología , Fermentación , Microbioma Gastrointestinal , Gliceraldehído/metabolismo , Gliceraldehído/farmacología , Gliceraldehído/uso terapéutico , Glicerol/inmunología , Glicerol/metabolismo , Humanos , Metabolómica , Propano/farmacología , Propano/uso terapéutico , Vancomicina/farmacología
10.
Clin Gastroenterol Hepatol ; 15(5): 712-719.e4, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27080737

RESUMEN

BACKGROUND & AIMS: We sought to determine the efficacy of psyllium fiber treatment on abdominal pain and stool patterns in children with irritable bowel syndrome (IBS). We evaluated effects on breath hydrogen and methane production, gut permeability, and microbiome composition. We also investigated whether psychological characteristics of children or parents affected the response to treatment. METHODS: We performed a randomized, double-blind trial of 103 children (mean age, 13 ± 3 y) with IBS seen at primary or tertiary care settings. After 2 weeks on their habitual diet, children began an 8-day diet excluding carbohydrates thought to cause symptoms of IBS. Children with ≥75% improvement in abdominal pain were excluded (n = 17). Children were assigned randomly to groups given psyllium (n = 37) or placebo (maltodextrin, n = 47) for 6 weeks. Two-week pain and stool diaries were compared at baseline and during the final 2 weeks of treatment. We assessed breath hydrogen and methane production, intestinal permeability, and the composition of the microbiome before and after administration of psyllium or placebo. Psychological characteristics of children were measured at baseline. RESULTS: Children in the psyllium group had a greater reduction in the mean number of pain episodes than children in the placebo group (mean reduction of 8.2 ± 1.2 after receiving psyllium vs mean reduction of 4.1 ± 1.3 after receiving placebo; P = .03); the level of pain intensity did not differ between the groups. Psychological characteristics were not associated with response. At the end of the study period, the percentage of stools that were normal (Bristol scale scores, 3-5), breath hydrogen or methane production, intestinal permeability, and microbiome composition were similar between groups. CONCLUSIONS: Psyllium fiber reduced the number of abdominal pain episodes in children with IBS, independent of psychological factors. Psyllium did not alter breath hydrogen or methane production, gut permeability, or microbiome composition. ClinicalTrials.gov no: NCT00526903.


Asunto(s)
Dolor Abdominal/terapia , Fibras de la Dieta/administración & dosificación , Síndrome del Colon Irritable/terapia , Psyllium/administración & dosificación , Adolescente , Pruebas Respiratorias , Niño , Método Doble Ciego , Femenino , Humanos , Masculino , Placebos/administración & dosificación , Resultado del Tratamiento
12.
J Clin Microbiol ; 51(4): 1237-40, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23303498

RESUMEN

Multiyear molecular epidemiological surveillance of multidrug-resistant Pseudomonas aeruginosa (MRPA) in a pediatric cystic fibrosis care center identified an endemic MRPA strain (Houston-1). Recent hospitalization was found to be a statistically significant risk factor for acquisition of the endemic strain. Multiple infection control improvements led to the reduced incidence of the Houston-1 strain in the CF population.


Asunto(s)
Fibrosis Quística/complicaciones , Farmacorresistencia Bacteriana Múltiple , Infecciones por Pseudomonas/epidemiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Análisis por Conglomerados , Genotipo , Hospitales Pediátricos , Humanos , Incidencia , Control de Infecciones/métodos , Epidemiología Molecular , Tipificación Molecular , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/aislamiento & purificación , Factores de Riesgo
13.
Pediatr Hematol Oncol ; 30(5): 445-54, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23659597

RESUMEN

Rothia mucilaginosa is a gram-positive coccus that poses a diagnostic challenge and often requires DNA pyrosequencing for diagnosis as it can be easily mistaken for coagulase-negative staphylococci on initial culture results. While it is often times normal human oral and upper respiratory tract microbiota, it can be a virulent pathogen in immunocompromised patients. Most commonly, it causes bacteremia (catheter and non-catheter related) and meningitis in these patients. Our objective was to report the incidence of R. mucilaginosa infections in neutropenic children with hematological malignancies or following hematopoietic stem cell transplantation at a major children's hospital. We report 11 patients in this cohort who developed clinically significant R. mucilaginosa infections, including three deaths directly attributable to this microorganism. Three patients developed significant neurological involvement, accounting for two of the deaths, and one patient died of disseminated infection. Except for one, all patients had severe neutropenia, central line catheters, and mucosal breakdown at the time of infection. Patients who succumbed never achieved neutrophil recovery. In conclusion, R. mucilaginosa can lead to life-threatening infections in immunocompromised hosts, especially in profoundly neutropenic patients.


Asunto(s)
Infecciones por Actinomycetales/mortalidad , Neoplasias Hematológicas/complicaciones , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Micrococcaceae/aislamiento & purificación , Infecciones por Actinomycetales/diagnóstico , Infecciones por Actinomycetales/microbiología , Adolescente , Adulto , Niño , Preescolar , Femenino , Estudios de Seguimiento , Neoplasias Hematológicas/terapia , Humanos , Masculino , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia , Adulto Joven
14.
Pediatr Pulmonol ; 58(8): 2298-2307, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37222404

RESUMEN

BACKGROUND: Hispanic people with cystic fibrosis (CF) have decreased life expectancy and earlier acquisition of Pseudomonas aeruginosa compared to non-Hispanic white individuals with CF. Racial and ethnic differences in the airway microbiome of CF may contribute to known health disparity, but have not been studied. The objective was to describe differences in the upper airway microbial community in Hispanic and non-Hispanic white children with CF. METHODS: This prospective, observational cohort study of 59 Hispanic and non-Hispanic white children with CF, ages 2-10 years old, was performed at Texas Children's Hospital (TCH) from February 2019 to January 2020. Oropharyngeal swabs were collected from the cohort during clinic visit. Swab samples underwent sequencing (16S V4 rRNA), diversity analysis, and taxonomic profiling. Key demographic and clinical data were collected from the electronic medical record and the CF Foundation Patient Registry (CFFPR). Statistical analysis compared sequencing, demographic, and clinical data. RESULTS: We found no significant difference in Shannon diversity or relative abundance of bacterial phyla between Hispanic and non-Hispanic children with CF. However, a low abundant taxa- "uncultured bacterium" belonging to the order Saccharimonadales was significantly higher in Hispanic children (mean relative abundance = 0.13%) compared to the non-Hispanic children (0.03%). Hispanic children had increased incidence of P. aeruginosa (p = 0.045) compared to non-Hispanic children. CONCLUSION: We did not find a significant difference in the airway microbial diversity between Hispanic and non-Hispanic white children with CF. However, we found a greater relative abundance of Saccharimonadales and higher incidence of P. aeruginosa in Hispanic children with CF.


Asunto(s)
Fibrosis Quística , Microbiota , Humanos , Niño , Preescolar , Fibrosis Quística/microbiología , Estudios Prospectivos , Microbiota/genética , Nariz , Tráquea , Bacterias/genética , Pseudomonas aeruginosa
15.
J Clin Microbiol ; 50(4): 1326-30, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22238440

RESUMEN

Streptococcus pneumoniae is a major cause of bacteremia, meningitis, pneumonia, sinusitis, and acute otitis media in children. Although optochin susceptibility, bile solubility, and Quellung testing are the standards for identifying and differentiating pneumococci, there are several reports of nontypeable pneumococci that give inconsistent results with one or more of these tests. We characterized 52 isolates previously labeled as nontypeable pneumococci. Microbiological methods included repeating the Quellung reaction using a new and expanded group of antisera, optochin susceptibility and bile solubility tests, and automated Vitek 2 identification. Molecular methods included PCR detection of ply and psaA genes, multilocus sequence typing (MLST), 16S rRNA gene sequencing, and pyrosequencing. Of the 52 isolates, 38 (73%) were optochin susceptible, were psaA and ply positive, and could be serotyped by the Quellung reaction. The remaining 14 isolates, isolated from patients with otitis media (n = 6), bacteremia (n = 6), meningitis (n = 1), and pneumonia (n = 1), underwent further analysis. Three of these 14 isolates were nontypeable due to autoagglutination but were pneumococci by all tests and represented pneumococcal sequence types previously recognized by MLST. The 11 remaining isolates were optochin resistant, and 6 of these were bile soluble. Three of 11 were both psaA and ply positive and clustered with pneumococci by MLST (2 were bile soluble); 8 lacked psaA (5 ply positive, 4 bile soluble) and likely belonged to other Streptococcus species. In conclusion, few isolates were truly nontypeable by Quellung reaction, and MLST and the presence of psaA proved useful in distinguishing between atypical pneumococci and other streptococcal species.


Asunto(s)
Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/clasificación , Antibacterianos/farmacología , Bacteriemia/microbiología , Niño , Farmacorresistencia Bacteriana , Genes Bacterianos , Genes Esenciales , Humanos , Tipificación de Secuencias Multilocus , Otitis/microbiología , Filogenia , Quinina/análogos & derivados , Quinina/farmacología , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/aislamiento & purificación
17.
J Mol Diagn ; 24(2): 158-166, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34775029

RESUMEN

Hospital-acquired infections pose significant costly global challenges to patient care. Rapid and sensitive methods to identify potential outbreaks are integral to infection control measures. Whole-genome sequencing (WGS)-based bacterial strain typing provides higher discriminatory power over standard nucleotide banding pattern-based methods such as repetitive sequence-based PCR (rep-PCR). However, integration of WGS into clinical epidemiology is limited by the lack of consensus in methodology and data analysis/interpretation. In this study, WGS was performed on genomic DNA extracted from 22 multidrug-resistant Pseudomonas aeruginosa (MDR-PA) isolates using next-generation sequencing. Resulting high-quality reads were analyzed for phylogenetic relatedness using a whole-genome multilocus sequence typing (wgMLST)-based software program and single-nucleotide variant phylogenomics (SNVPhyl). WGS-based results were compared with conventional MLST and archived rep-PCR results. Rep-PCR identified three independent clonal clusters of MDR-PA. Only one clonal cluster identified by rep-PCR, an endemic strain within the pediatric cystic fibrosis population at Texas Children's Hospital, was concordantly identified using wgMLST and SNVPhyl. Results were highly consistent between the three sequence-based analyses (conventional MLST, wgMLST, and SNVPhyl), and these results remained consistent with the addition of 74 MDR-PA genomes. These WGS-based methods provided greater resolution for strain discrimination than rep-PCR or standard MLST classification, and the ease of use of wgMLST software renders it clinically viable for analysis, interpretation, and reporting of WGS-based strain typing.


Asunto(s)
Pseudomonas aeruginosa , Secuencias Repetitivas de Ácidos Nucleicos , Técnicas de Tipificación Bacteriana/métodos , Niño , Humanos , Tipificación de Secuencias Multilocus/métodos , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Pseudomonas aeruginosa/genética , Secuenciación Completa del Genoma/métodos
18.
iScience ; 25(5): 104158, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35494230

RESUMEN

Gut microbes can synthesize multiple neuro-active metabolites. We profiled neuro-active compounds produced by the gut commensal Bacteroides ovatus in vitro and in vivo by LC-MS/MS. We found that B. ovatus generates acetic acid, propionic acid, isobutyric acid, and isovaleric acid. In vitro, B. ovatus consumed tryptophan and glutamate and synthesized the neuro-active compounds glutamine and GABA. Consistent with our LC-MS/MS-based in vitro data, we observed elevated levels of acetic acid, propionic acid, isobutyric acid, and isovaleric acid in the intestines of B. ovatus mono-associated mice compared with germ-free controls. B. ovatus mono-association also increased the concentrations of intestinal GABA and decreased the concentrations of tryptophan and glutamine compared with germ-free controls. Computational network analysis revealed unique links between SCFAs, neuro-active compounds, and colonization status. These results highlight connections between microbial colonization and intestinal neurotransmitter concentrations, suggesting that B. ovatus selectively influences the presence of intestinal neurotransmitters.

19.
J Autism Dev Disord ; 52(9): 3780-3789, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35726077

RESUMEN

Hyperserotonemia, or elevated levels of whole blood serotonin (WB5-HT), was the first biomarker linked to autism spectrum disorder (ASD). Despite numerous studies investigating the etiology of hyperserotonemia, results have been inconsistent. Recent findings suggest a relationship between the immune system and hyperserotonemia. The current study investigated whether intestinal 5-HT levels, 5-HT gene expression, or intestinal cell types predict WB5-HT. Participants included thirty-one males aged 3-18 who were classified into one of three groups: ASD and functional GI issues, typically developing with GI issues, and typically developing without GI issues. Samples from a lower endoscopy were analyzed to examine the pathways in predicting WB-5HT. Results demonstrated an association between T-Lymphocytes and WB5-HT.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Biomarcadores , Niño , Humanos , Masculino , Serotonina
20.
Clin Transl Sci ; 15(4): 1036-1049, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35048535

RESUMEN

Peppermint oil (PMO) is effective in the treatment of functional abdominal pain disorders, but its mechanism of action is unclear. Evidence suggests PMO has microbicidal activity. We investigated the effect of three different doses of PMO on gut microbiome composition. Thirty children (7-12 years of age) with functional abdominal pain provided a baseline stool sample prior to randomization to 180, 360, or 540 mg of enteric coated PMO (10 participants per dose). They took their respective dose of PMO (180 mg once, 180 mg twice, or 180 mg thrice daily) for 1 week, after which the stool collection was repeated. Baseline and post-PMO stools were analyzed for microbiome composition. There was no difference in alpha diversity of the gut microbiome between the baseline and post-PMO treatment. Principal coordinate analysis revealed no significant difference in overall bacterial composition between baseline and post-PMO samples, as well as between the PMO dose groups. However, the very low abundant Collinsella genus and three operational taxonomic units (one belonging to Collinsella) were significantly different in samples before and after PMO treatment. The Firmicutes/Bacteroidetes ratio was lower in children who received 540 mg of PMO compared to the 180 mg and 360 mg dose groups (p = 0.04). Network analysis revealed separation between pre- and post-PMO fecal samples with the genus Collinsella driving the post-PMO clusters. PMO administration appeared to impact only low abundance bacteria. The 540 mg PMO dose differentially impacted the Firmicutes/Bacteroidetes ratio. A higher dose and/or longer duration of treatment might yield different results.


Asunto(s)
Microbioma Gastrointestinal , Dolor Abdominal/tratamiento farmacológico , Bacteroidetes , Niño , Heces/microbiología , Humanos , Mentha piperita , Aceites de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA