Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(16): e202300003, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36791229

RESUMEN

We report a synthetic strategy to link titanium-oxo (Ti-oxo) clusters into metal-organic framework (MOF) glasses with high porosity though the carboxylate linkage. A new series of MOF glasses was synthesized by evaporation of solution containing Ti-oxo clusters Ti16 O16 (OEt)32 , linkers, and m-cresol. The formation of carboxylate linkages between the Ti-oxo clusters and the carboxylate linkers was confirmed by Fourier-transform infrared (FT-IR) spectroscopy. The structural integrity of the Ti-oxo clusters within the glasses was evidenced by both X-ray absorption near edge structure (XANES) and 17 O magic-angle spinning (MAS) NMR. After ligand exchange and activation, the fumarate-linked MOF glass, termed Ti-Fum, showed a N2 Brunauer-Emmett-Teller (BET) surface areas of 923 m2 g-1 , nearly three times as high as the phenolate-linked MOF glass with the highest BET surface area prior to this report.

2.
J Am Chem Soc ; 143(22): 8352-8366, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34041912

RESUMEN

Isolated hafnium (Hf) sites were prepared on Silicalite-1 and SiO2 and investigated for acetone conversion to isobutene. Characterization by IR, 1H MAS NMR, and UV-vis spectroscopy suggests that Hf atoms are bonded to the support via three O atoms and have one hydroxyl group, i.e, (≡SiO)3Hf-OH. In the case of Hf/Silicalite-1, Hf-OH groups hydrogen bond with adjacent Si-OH to form (≡SiO)3Hf-OH···HO-Si≡ complexes. The turnover frequency for isobutene formation from acetone is 4.5 times faster over Hf/Silicalite-1 than Hf/SiO2. Lewis acidic Hf sites promote the aldol condensation of acetone to produce mesityl oxide (MO), which is the precursor to isobutene. For Hf/SiO2, both Hf sites and Si-OH groups are responsible for the decomposition of MO to isobutene and acetic acid, whereas for Hf/Silicalite-1, the (≡SiO)3Hf-OH···HO-Si≡ complex is the active site. Measured reaction kinetics show that the rate of isobutene formation over Hf/SiO2 and Hf/Silicalite-1 is nearly second order in acetone partial pressure, suggesting that the rate-limiting step involves formation of the C-C bond between two acetone molecules. The rate expression for isobutene formation predicts a second order dependence in acetone partial pressure at low partial pressures and a decrease in order with increasing acetone partial pressure, in good agreement with experimental observation. The apparent activation energy for isobutene formation from acetone over Hf/SiO2 is 116.3 kJ/mol, while that for Hf/Silicalite-1 is 79.5 kJ/mol. The lower activation energy for Hf/Silicalite-1 is attributed to enhanced adsorption of acetone and formation of a C-C bond favored by the H-bonding interaction between Hf-OH and an adjacent Si-OH group.

3.
J Am Chem Soc ; 143(50): 21364-21378, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34881868

RESUMEN

Atomically dispersed noble metal catalysts have drawn wide attention as candidates to replace supported metal clusters and metal nanoparticles. Atomic dispersion can offer unique chemical properties as well as maximum utilization of the expensive metals. Addition of a second metal has been found to help reduce the size of Pt ensembles in bimetallic clusters; however, the stabilization of isolated Pt atoms in small nests of nonprecious metal atoms remains challenging. We now report a novel strategy for the design, synthesis, and characterization of a zeolite-supported propane dehydrogenation catalyst that incorporates predominantly isolated Pt atoms stably bonded within nests of Zn atoms located within the nanoscale pores of dealuminated zeolite Beta. The catalyst is stable in long-term operation and exhibits high activity and high selectivity to propene. Atomic resolution images, bolstered by X-ray absorption spectra, demonstrate predominantly atomic dispersion of the Pt in the nests and, with complementary infrared and nuclear magnetic resonance spectra, determine a structural model of the nested Pt.

4.
J Am Chem Soc ; 142(44): 18936-18945, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33090798

RESUMEN

The molecular level characterization of heterogeneous catalysts is challenging due to the low concentration of surface sites and the lack of techniques that can selectively probe the surface of a heterogeneous material. Here, we report the joint application of room temperature proton-detected NMR spectroscopy under fast magic angle spinning (MAS) and dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP-SENS), to obtain the 195Pt solid-state NMR spectra of a prototypical example of highly dispersed Pt sites (single site or single atom), here prepared via surface organometallic chemistry, by grafting [(COD)Pt(OSi(OtBu)3)2] (1, COD = 1,5-cyclooctadiene) on partially dehydroxylated silica (1@SiO2). Compound 1@SiO2 has a Pt loading of 3.7 wt %, a surface area of 200 m2/g, and a surface Pt density of around 0.6 Pt site/nm2. Fast MAS 1H{195Pt} dipolar-HMQC and S-REDOR experiments were implemented on both the molecular precursor 1 and on the surface complex 1@SiO2, providing access to 195Pt isotropic shifts and Pt-H distances, respectively. For 1@SiO2, the measured isotropic shift and width of the shift distribution constrain fits of the static wide-line DNP-enhanced 195Pt spectrum, allowing the 195Pt chemical shift tensor parameters to be determined. Overall the NMR data provide evidence for a well-defined, single-site structure of the isolated Pt sites.

5.
Angew Chem Int Ed Engl ; 58(19): 6255-6259, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30912601

RESUMEN

The adsorption and reaction properties of heterogeneous zeolite catalysts (e.g. for catalytic cracking of petroleum, partial oxidation of natural gas) depend strongly on the types and distributions of Al heteroatoms in the aluminosilicate frameworks. The origins of these properties have been challenging to discern, owing in part to the structural complexity of aluminosilicate zeolites. Herein, combined solid-state NMR and synchrotron X-ray powder diffraction analyses show the Al atoms locate preferentially in certain framework sites in the zeolite catalyst Al-SSZ-70. Through-covalent-bond 2D 27 Al{29 Si} J-correlation NMR spectra allow distinct framework Al sites to be identified and their relative occupancies quantified. The analyses show that 94 % of the Al atoms are located at the surfaces of the large-pore interlayer channels of Al-SSZ-70, while only 6 % are in the sub-nm intralayer channels. The selective siting of Al atoms accounts for the reaction properties of catalysts derived from SSZ-70.

6.
J Am Chem Soc ; 140(41): 13340-13349, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30253097

RESUMEN

Dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance (NMR) has developed into an invaluable tool for the investigation of a wide range of materials. However, the sensitivity gain achieved with many polarizing agents suffers from an unfavorable field and magic angle spinning (MAS) frequency dependence. We present a series of new hybrid biradicals, soluble in organic solvents, that consist of an isotropic narrow electron paramagnetic resonance line radical, α,γ-bisdiphenylene-ß-phenylallyl (BDPA), tethered to a broad line nitroxide. By tuning the distance between the two electrons and the substituents at the nitroxide moiety, correlations between the electron-electron interactions and the electron spin relaxation times on one hand and the DNP enhancement factors on the other hand are established. The best radical in this series has a short methylene linker and bears bulky phenyl spirocyclohexyl ligands. In a 1.3 mm prototype DNP probe, it yields enhancements of up to 185 at 18.8 T (800 MHz 1H resonance frequency) and 40 kHz MAS. We show that this radical gives enhancement factors of over 60 in 3.2 mm sapphire rotors at both 18.8 and 21.1 T (900 MHz 1H resonance frequency), the highest magnetic field available today for DNP. The effect of the rotor size and of the microwave irradiation inside the MAS rotor is discussed. Finally, we demonstrate the potential of this new series of polarizing agents by recording high field 27Al and 29Si DNP surface enhanced NMR spectra of amorphous aluminosilicates and 17O NMR on silica nanoparticles.

7.
Phys Chem Chem Phys ; 20(37): 23976-23987, 2018 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30211922

RESUMEN

The Cross-Effect (CE) Dynamic Nuclear Polarization (DNP) mechanism under Magic Angle Spinning (MAS) induces depletion or "depolarization" of the NMR signal, in the absence of microwave irradiation. In this study, the role of T1e on nuclear depolarization under MAS was tested experimentally by systematically varying the local and global electron spin concentration using mono-, bi- and tri-radicals. These spin systems show different depolarization effects that systematically tracked with their different T1e rates, consistent with theoretical predictions. In order to test whether the effect of T1e is directly or indirectly convoluted with other spin parameters, the tri-radical system was doped with different concentrations of GdCl3, only tuning the T1e rates, while keeping other parameters unchanged. Gratifyingly, the changes in the depolarization factor tracked the changes in the T1e rates. The experimental results are corroborated by quantum mechanics based numerical simulations which recapitulated the critical role of T1e. Simulations showed that the relative orientation of the two g-tensors and e-e dipolar interaction tensors of the CE fulfilling spin pair also plays a major role in determining the extent of depolarization, besides the enhancement. This is expected as orientations influence the efficiency of the various level anti-crossings or the "rotor events" under MAS. However, experimental evaluation of the empirical spectral diffusion parameter at static condition showed that the local vs. global e-e dipolar interaction network is not a significant variable in the commonly used nitroxide radical system studied here, leaving T1e rates as the major modulator of depolarization.

8.
Phys Chem Chem Phys ; 17(38): 25449-54, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26365719

RESUMEN

Here we present a systematic study of direct (27)Al Dynamic Nuclear Polarization (DNP) as induced by three different mono-radical probes with side groups of varying charge states. By employing 4-amino TEMPO that adsorbs to negatively charged surface sites of Al-SBA-15, we achieve a (27)Al signal enhancement factor of ∼13 compared to a signal enhancement factor of ∼3-4 from mono-radicals that do not adsorb as strongly to the surfaces of Al-SBA-15, here 4-carboxy- and 4-hydroxy-TEMPO. By performing Electron Spin Echo Envelope Modulation (ESEEM) experiments and continuous wave (cw) Electron Paramagnetic Resonance (EPR) lineshape analysis using various nitroxide probes imbibed in Al-SBA-15, we find that direct (27)Al DNP enhancements achieved with different spin probes can be attributed to proximity and local concentration of the spin probes to aluminum on the surface of mesoporous alumina-silica.

9.
Phys Chem Chem Phys ; 16(35): 18694-706, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-24968276

RESUMEN

For the broadest dissemination of solid-state dynamic nuclear polarization (ssDNP) enhanced NMR as a material characterization tool, the ability to employ generic mono-nitroxide radicals as spin probes is critical. A better understanding of the factors contributing to ssDNP efficiency is needed to rationally optimize the experimental condition for the practically accessible spin probes at hand. This study seeks to advance the mechanistic understanding of ssDNP by examining the effect of electron spin dynamics on ssDNP performance at liquid helium temperatures (4-40 K). The key observation is that bi-radicals and mono-radicals can generate comparable nuclear spin polarization at 4 K and 7 T, which is in contrast to the observation for ssDNP at liquid nitrogen temperatures (80-150 K) that finds bi-radicals to clearly outperform mono-radicals. To rationalize this observation, we analyze the change in the DNP-induced nuclear spin polarization (Pn) and the characteristic ssDNP signal buildup time as a function of electron spin relaxation rates that are modulated by the mono- and bi-radical spin concentration. Changes in Pn are consistent with a systematic variation in the product of the electron spin-lattice relaxation time and the electron spin flip-flop rate that constitutes an integral saturation factor of an inhomogeneously broadened EPR spectrum. We show that the comparable Pn achieved with both radical species can be reconciled with a comparable integral EPR saturation factor. Surprisingly, the largest Pn is observed at an intermediate spin concentration for both mono- and bi-radicals. At the highest radical concentration, the stronger inter-electron spin dipolar coupling favors ssDNP, while oversaturation diminishes Pn, as experimentally verified by the observation of a maximum Pn at an intermediate, not the maximum, microwave (µw) power. At the maximum µw power, oversaturation reduces the electron spin population differential that must be upheld between electron spins that span a frequency difference matching the (1)H NMR frequency-characteristic of the cross effect DNP. This new mechanistic insight allows us to rationalize experimental conditions where generic mono-nitroxide probes can offer competitive ssDNP performance to that of custom designed bi-radicals, and thus helps to vastly expand the application scope of ssDNP for the study of functional materials and solids.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Óxidos de Nitrógeno/química , Óxidos N-Cíclicos/química , Electrones , Glicerol/química , Espectroscopía de Resonancia Magnética , Temperatura , Agua/química
10.
ACS Cent Sci ; 8(7): 926-932, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35912353

RESUMEN

We report a postsynthetic strategy and its implementation to make covalent organic frameworks (COFs) with irreversible hydrazide linkages. This involved the synthesis of three 2D and 3D hydrazine-linked frameworks and their partial oxidation. The linkage synthesis and functional group transformation-hydrazine and hydrazide-were evidenced by 15N multi-CP-MAS NMR. In addition, the isothermal water uptake profiles of these frameworks were studied, leading to the discovery of one hydrazine-hydrazide-linked COF suitable for water harvesting from air in arid conditions. This COF displayed characteristic S-shaped water sorption profiles, a steep pore-filling step below 18% relative humidity at 25 °C, and a total uptake capacity of 0.45 g g-1. We found that even small changes made on the molecular level can lead to major differences in the water isotherm profiles, therefore pointing to the utility of water sorption analysis as a complementary analytical tool to study linkage transformations.

11.
Chem Mater ; 34(9): 3893-3901, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35573112

RESUMEN

Mg-Al mixed metal oxides (MMOs), derived from the decomposition of layered double hydroxides (LDHs), have been purposed as adsorbents for CO2 capture of industrial plant emissions. To aid in the design and optimization of these materials for CO2 capture at 200 °C, we have used a combination of solid-state nuclear magnetic resonance (ssNMR) and density functional theory (DFT) to characterize the CO2 gas sorption products and determine the various sorption sites in Mg-Al MMOs. A comparison of the DFT cluster calculations with the observed 13C chemical shifts of the chemisorbed products indicates that mono- and bidentate carbonates are formed at the Mg-O sites with adjacent Al substitution of an Mg atom, while the bicarbonates are formed at Mg-OH sites without adjacent Al substitution. Quantitative 13C NMR shows an increase in the relative amount of strongly basic sites, where the monodentate carbonate product is formed, with increasing Al/Mg molar ratios in the MMOs. This detailed understanding of the various basic Mg-O sites presented in MMOs and the formation of the carbonate, bidentate carbonate, and bicarbonate chemisorbed species yields new insights into the mechanism of CO2 adsorption at 200 °C, which can further aid in the design and capture capacity optimization of the materials.

12.
Sci Adv ; 8(31): eabo6849, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35921416

RESUMEN

Carbon capture and sequestration reduces carbon dioxide emissions and is critical in accomplishing carbon neutrality targets. Here, we demonstrate new sustainable, solid-state, polyamine-appended, cyanuric acid-stabilized melamine nanoporous networks (MNNs) via dynamic combinatorial chemistry (DCC) at the kilogram scale toward effective and high-capacity carbon dioxide capture. Polyamine-appended MNNs reaction mechanisms with carbon dioxide were elucidated with double-level DCC where two-dimensional heteronuclear chemical shift correlation nuclear magnetic resonance spectroscopy was performed to demonstrate the interatomic interactions. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption. The coordination of polyamine and cyanuric acid modification endows MNNs with high adsorption capacity (1.82 millimoles per gram at 1 bar), fast adsorption time (less than 1 minute), low price, and extraordinary stability to cycling by flue gas. This work creates a general industrialization method toward carbon dioxide capture via DCC atomic-level design strategies.

13.
J Phys Chem B ; 125(48): 13329-13338, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34818009

RESUMEN

Pairing the spectral resolution provided by high magnetic fields at ambient temperature with the enhanced sensitivity offered by dynamic nuclear polarization (DNP) is a major goal of modern solid-state NMR spectroscopy, which will allow one to unlock ever-challenging applications. This study demonstrates that, by combining HyTEK2, a hybrid BDPA-nitroxide biradical polarizing agent, with ortho-terphenyl (OTP), a rigid DNP matrix, enhancement factors as high as 65 can be obtained at 230 K, 40 kHz magic angle spinning (MAS), and 18.8 T. The temperature dependence of the DNP enhancement and its behavior around the glass transition temperature (Tg) of the matrix is investigated by variable-temperature EPR measurements of the electron relaxation properties and numerical simulations. A correlation is suggested between the decrease in enhancement at the passage of the Tg and the concomitant drop of both transverse electron relaxation times in the biradical.


Asunto(s)
Campos Magnéticos , Óxidos de Nitrógeno , Espectroscopía de Resonancia Magnética , Temperatura
14.
Chem Sci ; 11(10): 2810-2818, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34084341

RESUMEN

Dynamic Nuclear Polarization (DNP) has recently emerged as a key method to increase the sensitivity of solid-state NMR spectroscopy under Magic Angle Spinning (MAS). While efficient binitroxide polarizing agents such as AMUPol have been developed for MAS DNP NMR at magnetic fields up to 9.4 T, their performance drops rapidly at higher fields due to the unfavorable field dependence of the cross-effect (CE) mechanism and AMUPol-like radicals were so far disregarded in the context of the development of polarizing agents for very high-field DNP. Here, we introduce a new family of water-soluble binitroxides, dubbed TinyPols, which have a three-bond non-conjugated flexible amine linker allowing sizable couplings between the two unpaired electrons. We show that this adjustment of the linker is crucial and leads to unexpectedly high DNP enhancement factors at 18.8 T and 21.1 T: an improvement of about a factor 2 compared to AMUPol is reported for spinning frequencies ranging from 5 to 40 kHz, with ε H of up to 90 at 18.8 T and 38 at 21.1 T for the best radical in this series, which are the highest MAS DNP enhancements measured so far in aqueous solutions at these magnetic fields. This work not only breathes a new momentum into the design of binitroxides tailored towards high magnetic fields, but also is expected to push the application frontiers of high-resolution DNP MAS NMR, as demonstrated here on a hybrid mesostructured silica material.

15.
J Magn Reson ; 264: 131-153, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26920839

RESUMEN

Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW bridge will provide an efficient means to collect DNP data that is crucial for understanding the relationship between experimental and sample conditions, and the DNP performance. The modularity of this instrumental platform is suitable for future upgrades and extensions to include new experimental capabilities to meet contemporary DNP needs, including the simultaneous operation of two or more MW sources, time domain DNP, electron double resonance measurements, pulsed EPR operation, or simply the implementation of higher power MW amplifiers.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Espectroscopía de Resonancia Magnética/instrumentación , Automatización , Frío , Campos Electromagnéticos , Radicales Libres/análisis , Microondas , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA