Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 19(11): 1372-1383, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37592155

RESUMEN

RNA molecules with the expanded CAG repeat (eCAGr) may undergo sol-gel phase transitions, but the functional impact of RNA gelation is completely unknown. Here, we demonstrate that the eCAGr RNA may form cytoplasmic gel-like foci that are rapidly degraded by lysosomes. These RNA foci may significantly reduce the global protein synthesis rate, possibly by sequestering the translation elongation factor eEF2. Disrupting the eCAGr RNA gelation restored the global protein synthesis rate, whereas enhanced gelation exacerbated this phenotype. eEF2 puncta were significantly enhanced in brain slices from a knock-in mouse model and from patients with Huntington's disease, which is a CAG expansion disorder expressing eCAGr RNA. Finally, neuronal expression of the eCAGr RNA by adeno-associated virus injection caused significant behavioral deficits in mice. Our study demonstrates the existence of RNA gelation inside the cells and reveals its functional impact, providing insights into repeat expansion diseases and functional impacts of RNA phase transition.


Asunto(s)
Enfermedad de Huntington , Expansión de Repetición de Trinucleótido , Humanos , Ratones , Animales , ARN/genética , ARN/metabolismo , Biosíntesis de Proteínas , Enfermedad de Huntington/genética , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
2.
Nature ; 575(7781): 203-209, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666698

RESUMEN

Accumulation of mutant proteins is a major cause of many diseases (collectively called proteopathies), and lowering the level of these proteins can be useful for treatment of these diseases. We hypothesized that compounds that interact with both the autophagosome protein microtubule-associated protein 1A/1B light chain 3 (LC3)1 and the disease-causing protein may target the latter for autophagic clearance. Mutant huntingtin protein (mHTT) contains an expanded polyglutamine (polyQ) tract and causes Huntington's disease, an incurable neurodegenerative disorder2. Here, using small-molecule-microarray-based screening, we identified four compounds that interact with both LC3 and mHTT, but not with the wild-type HTT protein. Some of these compounds targeted mHTT to autophagosomes, reduced mHTT levels in an allele-selective manner, and rescued disease-relevant phenotypes in cells and in vivo in fly and mouse models of Huntington's disease. We further show that these compounds interact with the expanded polyQ stretch and could lower the level of mutant ataxin-3 (ATXN3), another disease-causing protein with an expanded polyQ tract3. This study presents candidate compounds for lowering mHTT and potentially other disease-causing proteins with polyQ expansions, demonstrating the concept of lowering levels of disease-causing proteins using autophagosome-tethering compounds.


Asunto(s)
Alelos , Evaluación Preclínica de Medicamentos/métodos , Proteína Huntingtina/antagonistas & inhibidores , Proteína Huntingtina/genética , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/genética , Mutación/genética , Animales , Ataxina-3/genética , Autofagosomas/metabolismo , Autofagia , Modelos Animales de Enfermedad , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Femenino , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/efectos de los fármacos , Neuronas/citología , Péptidos/genética , Fenotipo , Reproducibilidad de los Resultados
3.
EMBO J ; 38(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30523147

RESUMEN

Proper temporal and spatial activation of stem cells relies on highly coordinated cell signaling. The primary cilium is the sensory organelle that is responsible for transmitting extracellular signals into a cell. Primary cilium size, architecture, and assembly-disassembly dynamics are under rigid cell cycle-dependent control. Using mouse incisor tooth epithelia as a model, we show that ciliary dynamics in stem cells require the proper functions of a cholesterol-binding membrane glycoprotein, Prominin-1 (Prom1/CD133), which controls sequential recruitment of ciliary membrane components, histone deacetylase, and transcription factors. Nuclear translocation of Prom1 and these molecules is particularly evident in transit amplifying cells, the immediate derivatives of stem cells. The absence of Prom1 impairs ciliary dynamics and abolishes the growth stimulation effects of sonic hedgehog (SHH) treatment, resulting in the disruption of stem cell quiescence maintenance and activation. We propose that Prom1 is a key regulator ensuring appropriate response of stem cells to extracellular signals, with important implications for development, regeneration, and diseases.


Asunto(s)
Antígeno AC133/metabolismo , Cilios/metabolismo , Incisivo/citología , Antígeno AC133/genética , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Humanos , Incisivo/metabolismo , Ratones , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Transporte de Proteínas , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo
4.
Trends Biochem Sci ; 43(6): 424-435, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29636213

RESUMEN

Expanded polyglutamine (polyQ) stretches within endogenous proteins cause at least nine human diseases. The structural basis of polyQ pathogenesis is the key to understanding fundamental mechanisms of these diseases, but it remains unclear and controversial due to a lack of polyQ protein structures at the single-atom level. Various hypotheses have been proposed to explain the structure-cytotoxicity relationship of pathogenic proteins with polyQ expansion, largely based on indirect evidence. Here we review these hypotheses and their supporting evidence, along with additional insights from recent structural biology and chemical biology studies, with a focus on Huntingtin (HTT), the most extensively studied polyQ disease protein. Lastly, we propose potential novel strategies that may further clarify the conformation-cytotoxicity relationship of polyQ proteins.


Asunto(s)
Proteína Huntingtina/química , Péptidos/química , Humanos , Proteína Huntingtina/metabolismo , Péptidos/metabolismo , Conformación Proteica
5.
Hum Mol Genet ; 29(2): 216-227, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31813995

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine tract in the huntingtin (HTT) protein. Mutant HTT (mHTT) toxicity is caused by its aggregation/oligomerization. The striatum is the most vulnerable region, although all brain regions undergo neuronal degeneration in the disease. Here we show that the levels of Bim, a BH3-only protein, are significantly increased in HD human post-mortem and HD mouse striata, correlating with neuronal death. Bim reduction ameliorates mHTT neurotoxicity in HD cells. In the HD mouse model, heterozygous Bim knockout significantly mitigates mHTT accumulation and neuronal death, ameliorating disease-associated phenotypes and lifespan. Therefore, Bim could contribute to the progression of HD.


Asunto(s)
Proteína 11 Similar a Bcl2/metabolismo , Cuerpo Estriado/metabolismo , Proteína Huntingtina/genética , Enfermedad de Huntington/metabolismo , Neuronas/patología , Anciano , Animales , Proteína 11 Similar a Bcl2/genética , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Técnicas de Inactivación de Genes , Heterocigoto , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/mortalidad , Enfermedad de Huntington/patología , Masculino , Ratones , Persona de Mediana Edad , Neuronas/metabolismo , Fenotipo , Agregado de Proteínas/genética , ARN Interferente Pequeño
6.
Acta Pharmacol Sin ; 42(4): 624-632, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32704040

RESUMEN

The mechanism underlying the resistance of cancer cells to chemotherapeutic drug varies with different cancer cells. Recent evidence shows that lysosomal function is associated with drug resistance of cancer cells. Artesunate, a derivative of artemisinin, displays broad antitumor activity and direct cytotoxicity on various tumor cells. Our previous study shows that artesunate increases autophagosome accumulation, while significantly decreases autolysosome number in cancer cells, suggesting that artesunate might impair the lysosomal function. In this study, we investigated the effects of artesunate on lysosomal function and its relationship with chemotherapeutic drug resistance in cancer cells. We found that the lysosomal function was significantly enhanced in two drug-resistant (A549/TAX and A549/DDP) cells. Furthermore, we showed that the enhanced lysosomal function by overexpression of transcription factor EB (TFEB) significantly increased MCF-7 cells resistance to doxorubicin (DOX), whereas the decreased lysosomal function by TFEB-knockdown or lysosome inhibitor chloroquine increased MCF-7 cells sensitivity to DOX. Treatment of A549/TAX cells with artesunate (2.5-50 µM) dose-dependently inhibited lysosomal function and the clearance of dysfunctional mitochondria, and induced cell apoptosis. Moreover, we demonstrated that artesunate exerted more potent inhibition on the resistant (A549/TAX and MCF-7/ADR) cells with higher activity of lysosomal function. Our results suggest that artesunate or other inhibitors of lysosomal function would be potential in the treatment of cancer cells with drug resistance caused by the enhanced lysosomal function.


Asunto(s)
Antineoplásicos/farmacología , Artesunato/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Lisosomas/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Catepsinas/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cloroquina/farmacología , Cromanos/farmacología , Doxorrubicina/farmacología , Sinergismo Farmacológico , Técnicas de Silenciamiento del Gen , Humanos , Paclitaxel/farmacología
7.
Mol Cell ; 47(3): 359-70, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22742832

RESUMEN

Bim is a proapoptotic BH3-only Bcl-2 family member. In response to death stimuli, Bim dissociates from the dynein light chain 1 (DYNLL1/LC8), where it is inactive, and can then initiate Bax/Bak-mediated mitochondria-dependent apoptosis. We found that Bim depletion increases autophagosome synthesis in cells and in vivo, and this effect is inhibited by overexpression of cell death-deficient Bim. Bim inhibits autophagy by interacting with Beclin 1, an autophagy regulator, and this interaction is facilitated by LC8. Bim bridges the Beclin 1-LC8 interaction and thereby inhibits autophagy by mislocalizing Beclin 1 to the dynein motor complex. Starvation, an autophagic stimulus, induces Bim phosphorylation, which abrogates LC8 binding to Bim, leading to dissociation of Bim and Beclin 1. Our data suggest that Bim switches locations between apoptosis-inactive/autophagy-inhibitory and apoptosis-active/autophagy-permissive sites.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteína 11 Similar a Bcl2 , Beclina-1 , Células Cultivadas , Células HeLa , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas/genética
8.
Brain ; 141(6): 1782-1798, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29608652

RESUMEN

See Huang and Gitler (doi:10.1093/brain/awy112) for a scientific commentary on this article.Lowering the levels of disease-causing proteins is an attractive treatment strategy for neurodegenerative disorders, among which Huntington's disease is an appealing disease for testing this strategy because of its monogenetic nature. Huntington's disease is mainly caused by cytotoxicity of the mutant HTT protein with an expanded polyglutamine repeat tract. Lowering the soluble mutant HTT may reduce its downstream toxicity and provide potential treatment for Huntington's disease. This is hard to achieve by small-molecule compound drugs because of a lack of effective targets. Here we demonstrate Gpr52, an orphan G protein-coupled receptor, as a potential Huntington's disease drug target. Knocking-out Gpr52 significantly reduces mutant HTT levels in the striatum and rescues Huntington's disease-associated behavioural phenotypes in a knock-in Huntington's disease mouse model expressing endogenous mutant Htt. Importantly, a novel Gpr52 antagonist E7 reduces mutant HTT levels and rescues Huntington's disease-associated phenotypes in cellular and mouse models. Our study provides an entry point for Huntington's disease drug discovery by targeting Gpr52.


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Mutación/genética , Receptores Acoplados a Proteínas G/deficiencia , Factores de Edad , Animales , Benzamidas/uso terapéutico , Cuerpo Estriado/metabolismo , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Conducta Exploratoria/fisiología , Marcha/fisiología , Células HEK293 , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/fisiopatología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Transgénicos , Neuronas/patología , Fenotipo , Quinoxalinas/uso terapéutico , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Tiofenos/uso terapéutico , Caminata/fisiología
9.
Mol Cell ; 43(1): 19-32, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21726807

RESUMEN

Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by inhibiting the activity of S-nitrosylation substrates, JNK1 and IKKß. Inhibition of JNK1 by NO reduces Bcl-2 phosphorylation and increases the Bcl-2-Beclin 1 interaction, thereby disrupting hVps34/Beclin 1 complex formation. Additionally, NO inhibits IKKß and reduces AMPK phosphorylation, leading to mTORC1 activation via TSC2. Overexpression of nNOS, iNOS, or eNOS impairs autophagosome formation primarily via the JNK1-Bcl-2 pathway. Conversely, NOS inhibition enhances the clearance of autophagic substrates and reduces neurodegeneration in models of Huntington's disease. Our data suggest that nitrosative stress-mediated protein aggregation in neurodegenerative diseases may be, in part, due to autophagy inhibition.


Asunto(s)
Autofagia , Óxido Nítrico/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Línea Celular , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Quinasa I-kappa B/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana/metabolismo , Ratones , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Complejos Multiproteicos , NG-Nitroarginina Metil Éster/farmacología , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Serina-Treonina Quinasas TOR , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
10.
J Biol Chem ; 292(33): 13599-13614, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28673965

RESUMEN

Autophagy comprises the processes of autophagosome synthesis and lysosomal degradation. In certain stress conditions, increased autophagosome synthesis may be associated with decreased lysosomal activity, which may result in reduced processing of the excessive autophagosomes by the rate-limiting lysosomal activity. Thus, the excessive autophagosomes in such situations may be largely unfused to lysosomes, and their formation/accumulation under these conditions is assumed to be futile for autophagy. The role of cytotoxicity in accumulating autophagosomes (representing synthesis of autophagosomes subsequently unfused to lysosomes) has not been investigated previously. Here, we found that accumulation of autophagosomes compromised cell viability, and this effect was alleviated by depletion of autophagosome machinery proteins. We tested whether reduction in autophagosome synthesis could affect cell viability in cell models expressing mutant huntingtin and α-synuclein, given that both of these proteins cause increased autophagosome biogenesis and compromised lysosomal activity. Importantly, partial depletion of autophagosome machinery proteins Atg16L1 and Beclin 1 significantly ameliorated cell death in these conditions. Our data suggest that production/accumulation of autophagosomes subsequently unfused to lysosomes (or accumulation of autophagosomes) directly induces cellular toxicity, and this process may be implicated in the pathogenesis of neurodegenerative diseases. Therefore, lowering the accumulation of autophagosomes may represent a therapeutic strategy for tackling such diseases.


Asunto(s)
Autofagosomas/metabolismo , Lisosomas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Qa-SNARE/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Autofagosomas/patología , Autofagosomas/ultraestructura , Línea Celular Tumoral , Supervivencia Celular , Células Cultivadas , Embrión de Mamíferos/citología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/patología , Lisosomas/ultraestructura , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Neuronas/ultraestructura , Proteínas Qa-SNARE/antagonistas & inhibidores , Proteínas Qa-SNARE/genética , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Células Tumorales Cultivadas , Proteínas de Transporte Vesicular/antagonistas & inhibidores , Proteínas de Transporte Vesicular/genética
11.
Physiol Rev ; 90(4): 1383-435, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20959619

RESUMEN

(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.


Asunto(s)
Autofagia/fisiología , Células Eucariotas/metabolismo , Mamíferos/fisiología , Animales , Células Eucariotas/patología , Humanos , Fagosomas/metabolismo , Transducción de Señal , Estrés Fisiológico
12.
Hum Mol Genet ; 24(10): 2899-913, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25669656

RESUMEN

Perturbations in autophagy and apoptosis are associated with cancer development. XIAP and cIAP1 are two members of the inhibitors of apoptosis protein family whose expression is elevated in different cancers. Here we report that XIAP and cIAP1 induce autophagy by upregulating the transcription of Beclin 1, an essential autophagy gene. The E3 ubiquitin ligase activity of both proteins activates NFκB signalling, leading to the direct binding of p65 to the promoter of Beclin 1 and to its transcriptional activation. This mechanism may be relevant in cancer cells, since we found increased levels of autophagy in different B-cell lymphoma-derived cell lines where XIAP is overexpressed and pharmacological inhibition of XIAP in these cell lines reduced autophagosome biogenesis. Thus, the chemotherapy resistance associated with XIAP and cIAP1 overexpression observed in several human cancers may be, at least in part, due to the Beclin 1-dependent autophagy activation by IAPs described in this study. In this context, the disruption of this increased autophagy might represent a valuable pharmacological tool to be included in combined anti-neoplastic therapies.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Autofagia/fisiología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteínas de la Membrana/genética , FN-kappa B/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Beclina-1 , Humanos , Transducción de Señal , Activación Transcripcional
13.
Hum Mol Genet ; 22(25): 5237-48, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23933736

RESUMEN

Autophagy, a major clearance route for many long-lived proteins and organelles, has long been implicated in cancer development. Myc is a proto-oncogene often found to be deregulated in many cancers, and thus is an attractive target for design of cancer therapy. Therefore, understanding the relationship between anti-Myc strategies and autophagy will be important for development of effective therapy. Here, we show that Myc depletion inhibits autophagosome formation and impairs clearance of autophagy substrates. Myc suppression has an inhibitory effect on autophagy via reduction of c-Jun N-terminal kinase 1 (JNK1) and B-cell lymphoma 2 (Bcl2) phosphorylation. Additionally, the decrease in JNK1 phosphorylation observed with Myc knockdown is associated with a reduction in ROS production. Our data suggest that targeting Myc in cancer therapy might have the additional benefit of inhibiting autophagy in the case of therapy resistance associated with chemotherapy-induced autophagy.


Asunto(s)
Proteína Quinasa 8 Activada por Mitógenos/biosíntesis , Neoplasias/genética , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteínas Proto-Oncogénicas c-myc/genética , Apoptosis/genética , Autofagia , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Proteína Quinasa 8 Activada por Mitógenos/genética , Terapia Molecular Dirigida , Neoplasias/patología , Neoplasias/terapia , Fagosomas/metabolismo , Fosforilación , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Autophagy ; : 1-2, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600662

RESUMEN

SQSTM1/p62 droplets play crucial roles in droplets-based macroautophagy/autophagy including selective autophagy and bulk autophagy. We observed that under several stress milieus, SQSTM1 droplets entirely colocalize with P-body markers, and these stress-induced SQSTM1 droplets contain mRNAs. We thus determined that under certain stress conditions, autophagic SQSTM1 droplets are converted to a type of enlarged P-bodies, designated SQSTM1/p62-dependent P-bodies (pd-PBs). Stress-enhanced SQSTM1 droplet formation drives the nucleation of pd-PBs through the interaction between SQSTM1 and the RNA-binding protein DDX6. Furthermore, pd-PBs sequester PYCARD, facilitating the assembly of NLRP3 inflammasomes, and in turn induce inflammation-related cytotoxicity. Our study suggests that under stress settings, autophagic SQSTM1 droplets are transformed to pd-PBs, underlining a critical role of SQSTM1 in P-body condensation.

15.
Mol Neurodegener ; 19(1): 26, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504290

RESUMEN

BACKGROUND: Dynamin-related protein 1 (Drp1) plays a critical role in mitochondrial dynamics. Partial inhibition of this protein is protective in experimental models of neurological disorders such as Parkinson's disease and Alzheimer's disease. The protective mechanism has been attributed primarily to improved mitochondrial function. However, the observations that Drp1 inhibition reduces protein aggregation in such neurological disorders suggest the involvement of autophagy. To investigate this potential novel protective mechanism of Drp1 inhibition, a model with impaired autophagy without mitochondrial involvement is needed. METHODS: We characterized the effects of manganese (Mn), which causes parkinsonian-like symptoms in humans, on autophagy and mitochondria by performing dose-response studies in two cell culture models (stable autophagy HeLa reporter cells and N27 rat immortalized dopamine neuronal cells). Mitochondrial function was assessed using the Seahorse Flux Analyzer. Autophagy flux was monitored by quantifying the number of autophagosomes and autolysosomes, as well as the levels of other autophagy proteins. To strengthen the in vitro data, multiple mouse models (autophagy reporter mice and mutant Drp1+/- mice and their wild-type littermates) were orally treated with a low chronic Mn regimen that was previously reported to increase α-synuclein aggregation and transmission via exosomes. RNAseq, laser captured microdissection, immunofluorescence, immunoblotting, stereological cell counting, and behavioural studies were used. RESULTS IN VITRO: data demonstrate that at low non-toxic concentrations, Mn impaired autophagy flux but not mitochondrial function and morphology. In the mouse midbrain, RNAseq data further confirmed autophagy pathways were dysregulated but not mitochondrial related genes. Additionally, Mn selectively impaired autophagy in the nigral dopamine neurons but not the nearby nigral GABA neurons. In cells with a partial Drp1-knockdown and Drp1+/- mice, Mn induced autophagic impairment was significantly prevented. Consistent with these observations, Mn increased the levels of proteinase-K resistant α-synuclein and Drp1-knockdown protected against this pathology. CONCLUSIONS: This study demonstrates that improved autophagy flux is a separate mechanism conferred by Drp1 inhibition independent of its role in mitochondrial fission. Given that impaired autophagy and mitochondrial dysfunction are two prominent features of neurodegenerative diseases, the combined protective mechanisms targeting these two pathways conferred by Drp1 inhibition make this protein an attractive therapeutic target.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Humanos , Ratones , Ratas , alfa-Sinucleína/metabolismo , Autofagia/fisiología , Dinaminas/genética , Dinaminas/metabolismo , Células HeLa , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Enfermedad de Parkinson/genética
16.
Cell Rep ; 43(3): 113935, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38460129

RESUMEN

Autophagy and ribonucleoprotein granules, such as P-bodies (PBs) and stress granules, represent vital stress responses to maintain cellular homeostasis. SQSTM1/p62 phase-separated droplets are known to play critical roles in selective autophagy; however, it is unknown whether p62 can exist as another form in addition to its autophagic droplets. Here, we found that, under stress conditions, including proteotoxicity, endotoxicity, and oxidation, autophagic p62 droplets are transformed to a type of enlarged PBs, termed p62-dependent P-bodies (pd-PBs). p62 phase separation is essential for the nucleation of pd-PBs. Mechanistically, pd-PBs are triggered by enhanced p62 droplet formation upon stress stimulation through the interactions between p62 and DDX6, a DEAD-box ATPase. Functionally, pd-PBs recruit the NLRP3 inflammasome adaptor ASC to assemble the NLRP3 inflammasome and induce inflammation-associated cytotoxicity. Our study shows that p62 droplet-to-PB transformation acts as a stress response to activate the NLRP3 inflammasome process, suggesting that persistent pd-PBs lead to NLRP3-dependent inflammation toxicity.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Sequestosoma-1 , Cuerpos de Procesamiento , Inflamación , Autofagia/fisiología
17.
Autophagy ; 20(6): 1213-1246, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38442890

RESUMEN

Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.


Asunto(s)
Autofagia , Ferroptosis , Ferroptosis/fisiología , Humanos , Autofagia/fisiología , Animales , Consenso
18.
Nat Genet ; 36(6): 585-95, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15146184

RESUMEN

Huntington disease is one of nine inherited neurodegenerative disorders caused by a polyglutamine tract expansion. Expanded polyglutamine proteins accumulate abnormally in intracellular aggregates. Here we show that mammalian target of rapamycin (mTOR) is sequestered in polyglutamine aggregates in cell models, transgenic mice and human brains. Sequestration of mTOR impairs its kinase activity and induces autophagy, a key clearance pathway for mutant huntingtin fragments. This protects against polyglutamine toxicity, as the specific mTOR inhibitor rapamycin attenuates huntingtin accumulation and cell death in cell models of Huntington disease, and inhibition of autophagy has the converse effects. Furthermore, rapamycin protects against neurodegeneration in a fly model of Huntington disease, and the rapamycin analog CCI-779 improved performance on four different behavioral tasks and decreased aggregate formation in a mouse model of Huntington disease. Our data provide proof-of-principle for the potential of inducing autophagy to treat Huntington disease.


Asunto(s)
Enfermedad de Huntington/tratamiento farmacológico , Inhibidores de Proteínas Quinasas , Animales , Autofagia , Células COS , Modelos Animales de Enfermedad , Drosophila melanogaster , Femenino , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Sustancias Macromoleculares , Masculino , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas Quinasas/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR
19.
Sci Rep ; 13(1): 17191, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821485

RESUMEN

As the population ages, neurodegenerative diseases are becoming more prevalent, making it crucial to comprehend the underlying disease mechanisms and identify biomarkers to allow for early diagnosis and effective screening for clinical trials. Thanks to advancements in gene expression profiling, it is now possible to search for disease biomarkers on an unprecedented scale.Here we applied a selection of five machine learning (ML) approaches to identify blood-based biomarkers for Alzheimer's (AD) and Parkinson's disease (PD) with the application of multiple feature selection methods. Based on ROC AUC performance, one optimal random forest (RF) model was discovered for AD with 159 gene markers (ROC-AUC = 0.886), while one optimal RF model was discovered for PD (ROC-AUC = 0.743). Additionally, in comparison to traditional ML approaches, deep learning approaches were applied to evaluate their potential applications in future works. We demonstrated that convolutional neural networks perform consistently well across both the Alzheimer's (ROC AUC = 0.810) and Parkinson's (ROC AUC = 0.715) datasets, suggesting its potential in gene expression biomarker detection with increased tuning of their architecture.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/diagnóstico , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Aprendizaje Automático , Biomarcadores , Redes Neurales de la Computación , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética
20.
bioRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425803

RESUMEN

Dynamin-related protein 1 (Drp1) is typically known for its role in mitochondrial fission. A partial inhibition of this protein has been reported to be protective in experimental models of neurodegenerative diseases. The protective mechanism has been attributed primarily to improved mitochondrial function. Herein, we provide evidence showing that a partial Drp1-knockout improves autophagy flux independent of mitochondria. First, we characterized in cell and animal models that at low non-toxic concentrations, manganese (Mn), which causes parkinsonian-like symptoms in humans, impaired autophagy flux but not mitochondrial function and morphology. Furthermore, nigral dopaminergic neurons were more sensitive than their neighbouring GABAergic counterparts. Second, in cells with a partial Drp1-knockdown and Drp1 +/- mice, autophagy impairment induced by Mn was significantly attenuated. This study demonstrates that autophagy is a more vulnerable target than mitochondria to Mn toxicity. Furthermore, improving autophagy flux is a separate mechanism conferred by Drp1 inhibition independent of mitochondrial fission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA