Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D747-D755, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37930867

RESUMEN

Protists, a highly diverse group of microscopic eukaryotic organisms distinct from fungi, animals and plants, exert crucial roles within the earth's biosphere. However, the genomes of only a small fraction of known protist species have been published and made publicly accessible. To address this constraint, the Protist 10 000 Genomes Project (P10K) was initiated, implementing a specialized pipeline for single-cell genome/transcriptome assembly, decontamination and annotation of protists. The resultant P10K database (https://ngdc.cncb.ac.cn/p10k/) serves as a comprehensive platform, collating and disseminating genome sequences and annotations from diverse protist groups. Currently, the P10K database has incorporated 2959 genomes and transcriptomes, including 1101 newly sequenced datasets by P10K and 1858 publicly available datasets. Notably, it covers 45% of the protist orders, with a significant representation (53% coverage) of ciliates, featuring nearly a thousand genomes/transcriptomes. Intriguingly, analysis of the unique codon table usage among ciliates has revealed differences compared to the NCBI taxonomy system, suggesting a need to revise the codon tables used for these species. Collectively, the P10K database serves as a valuable repository of genetic resources for protist research and aims to expand its collection by incorporating more sequenced data and advanced analysis tools to benefit protist studies worldwide.


Asunto(s)
Bases de Datos Genéticas , Eucariontes , Hongos , Genoma , Animales , Codón , Eucariontes/genética , Hongos/genética , Plantas/genética
2.
Anal Chem ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023129

RESUMEN

Single-dispersed atoms (SDAs) as catalysts have drawn extensive attention due to their ultimate atom utilization efficiency and desirable catalytic capability. Atomic clusters (ACs) with potential multiple enzyme-like activities also display great practicability in catalysis-based biosensing. In this work, hybrid Mn ACs/SDAs were implanted in the frameworks of defect-engineered MIL 101(Cr) modulated by excess acetic acid, with a high loading capability of 13.9 wt %. Distinctively, Mn SDAs display weak superoxide dismutase (SOD)-like activity for specifically eliminating superoxide anion (O2•-), while Mn ACs/SDAs display both catalase-like and SOD-like activities for remarkable elimination of total reactive oxygen species (ROS) due to the cooperative effect of the two atom-scale catalytic sites. Thus, Mn ACs/SDAs can efficiently inhibit the chemiluminescent (CL) emission of multiple ROS-mediated luminol systems with a superior quenching rate of 85.5%. To validate the practicability of Mn ACs/SDAs for a sensitive CL assay, an immunoassay method was established to detect acetamiprid by using Mn ACs/SDAs as signal quenchers, which displayed a quantification range of 10 pg mL-1-25 ng mL-1 and a detection limit of 3.3 pg mL-1. This study paves an avenue for developing ACs/SDAs with multiple antioxidant activities that are suitable for application in biosensing.

3.
J Med Virol ; 96(6): e29714, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837795

RESUMEN

SARS-CoV-2 infection has been associated with the increased incidence of acute macular neuroretinopathy (AMN), an infrequent ocular disorder. However, the precise mechanisms underpinning AMN in the context of SARS-CoV-2 infection (AMN-SARS-CoV-2) remain elusive. In this case-control study, 14 patients diagnosed with AMN-SARS-CoV-2 between 2022/12 and 2023/3 were enrolled and compared with 14 SARS-CoV-2-infected individuals without AMN, who served as controls (SARS-CoV-2-no AMN). Metabolomic profiling using ultrahigh-performance liquid chromatography-online electrospray mass spectrometry revealed significant alterations in serum metabolites in AMN-SARS-CoV-2 patients. Coagulation abnormalities were observed in AMN-SARS-CoV-2 patients, and their relationship with metabolic disorders was studied. Finally, a predictive model for AMN-SARS-CoV-2 was established. Seventy-six upregulated and 42 downregulated metabolites were identified in AMN-SARS-CoV-2 cases. Notably, arginine metabolism within the urea cycle was significantly altered, evidenced by variations in ornithine, citrulline,  l-proline, and ADAM levels, correlating with abnormal coagulation markers like platelet crit, fibrinogen degradation product, and fibrinogen. Additionally, increased arginase 1 (AGR1) activity within the urea cycle and reduced nitric oxide synthase activity were observed in AMN-SARS-CoV-2. The integration of urea cycle metabolite levels with coagulation parameters yielded a robust discriminatory model for AMN-SARS-CoV-2, as evidenced by an area under the curve of 0.96. The findings of the present study enhance our comprehension of the underlying metabolic mechanisms associated with AMN-SARS-CoV-2 and offer potential diagnostic markers for this uncommon ocular disorder within the context of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/metabolismo , Estudios de Casos y Controles , Masculino , Femenino , Persona de Mediana Edad , Adulto , Metabolómica/métodos , Anciano , Coagulación Sanguínea , Enfermedades de la Retina/virología , Enfermedades de la Retina/sangre , Enfermedades de la Retina/diagnóstico
4.
Environ Res ; 259: 119513, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950815

RESUMEN

To investigate the effect of stalk type on the metallization degrees in FeCl3-derived magnetic biochar (MBC), MBC was synthesized via an impregnation-pyrolysis method using six different stalks. The Fe0 content in MBC significantly influenced its magnetic properties and ostensibly governed its catalytic capabilities. Analysis of the interaction between stalks and FeCl3 revealed that the variation in metallization degrees, resulting from FeCl2 decomposition (6.1%) and stalk-mediated reduction (20.7%), was directly responsible for the observed differences in MBC metallization. The presence of oxygen-containing functional groups and fixed carbon appeared to promote metallization in MBC induced by reduction. A series of statistical analyses indicated that the cellulose, lignin, and hemicellulose content of the stalks were key factors contributing to differences in MBC metallization degrees. Further exploration revealed that hemicellulose and cellulose were more effective than lignin in enhancing metallization through FeCl2 decomposition and reduction. Constructing stalk models demonstrated that the variance in the content of these three biomass components across the six stalk types could lead to differences in the metallization degree attributable to reduction and FeCl2 decomposition, thereby affecting the overall metallization degree of MBC. A prediction model for MBC metallization degree was developed based on these findings. Moreover, the elevated Si content in some stalks facilitated the formation of Fe2(SiO4), which subsequently impeded the reduction process. This study provides a theoretical foundation for the informed selection of stalk feedstocks in the production of FeCl3-derived MBC.

5.
BMC Pulm Med ; 24(1): 313, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961422

RESUMEN

BACKGROUND: Primary pulmonary myxoid sarcoma (PPMS) is a rare, low-grade malignant tumor, constituting approximately 0.2% of all lung tumors. Despite its rarity, PPMS possesses distinctive histological features and molecular alterations, notably the presence of EWSR1-CREB1 gene fusion. However, its precise tissue origin remains elusive, posing challenges in clinical diagnosis. CASE DEMONSTRATION: A 20-year-old male patient underwent a routine physical examination 6 months prior, revealing a pulmonary mass. Following surgical excision, microscopic evaluation unveiled predominantly short spindle-shaped tumor cells organized in a fascicular, beam-like, or reticular pattern. The stromal matrix exhibited abundant mucin, accompanied by lymphocytic and plasma cell infiltration, with Russell bodies evident in focal areas. Immunophenotypic profiling revealed positive expression of vimentin and epithelial membrane antigen in tumor cells, whereas smooth muscle actin and S-100, among others, were negative. Ki-67 proliferation index was approximately 5%. Subsequent second-generation sequencing identified the characteristic EWSR1-CREB1 gene fusion. The definitive pathological diagnosis established PPMS. The patient underwent no adjuvant chemotherapy or radiotherapy and remained recurrence-free during a 30-month follow-up period. CONCLUSIONS: We report a rare case of PPMS located within the left lung lobe interlobar fissure, featuring Russell body formation within the tumor stroma, a novel finding in PPMS. Furthermore, the histomorphological characteristics of this case highlight the diagnostic challenge it poses, as it may mimic inflammatory myofibroblastic tumor, extraskeletal myxoid chondrosarcoma, or hemangiopericytoma-like fibrous histiocytoma. Therefore, accurate diagnosis necessitates an integrated approach involving morphological, immunohistochemical, and molecular analyses.


Asunto(s)
Neoplasias Pulmonares , Humanos , Masculino , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Adulto Joven , Proteínas de Fusión Oncogénica/genética , Tomografía Computarizada por Rayos X , Mixosarcoma/patología , Mixosarcoma/genética , Mixosarcoma/cirugía , Mixosarcoma/diagnóstico , Sarcoma/genética , Sarcoma/patología , Sarcoma/diagnóstico , Sarcoma/cirugía , Pulmón/patología , Pulmón/diagnóstico por imagen
6.
Angew Chem Int Ed Engl ; 63(20): e202402760, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38483296

RESUMEN

The phenomenon of polymorphism is ubiquitous in nature, the controlled manipulation of which not only increases our ontological understanding of nature but also facilitates the conceptualization and realization of novel functional materials. However, achieving targeted polymorphism in supramolecular assemblies (SAs) remains a formidable challenge, largely because of the constraints inherent in controlling the specific binding motifs of noncovalent interactions. Herein, we propose self-adaptive aromatic cation-π binding motifs to construct polymorphic SAs in both the solid and solution states. Using distinct discrete cation-π-cation and long-range cation-π binding motifs enables control of the self-assembly directionality of a C2h-symmetric bifunctional monomer, resulting in the successful formation of both two-dimensional and three-dimensional crystalline SAs (2D-CSA and 3D-CSA). The differences in the molecular packing of 3D-CSA compared with that of 2D-CSA significantly improve the charge separation and carrier mobility, leading to enhanced photocatalytic activity for the aerobic oxidation of thioanisole to methyl phenyl sulfoxide (yield of 99 % vs 57 %). 2D-CSA, which has a vertical extended structure with favorable stronger interaction with toluene though face-to-face cation-π interactions than methylcyclohexane, shows higher toluene/methylcyclohexane separation efficiency than 3D-CSA (96.9 % for 2D-CSA vs 56.3 % for 3D-CSA).

7.
Anal Chem ; 95(24): 9366-9372, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37276189

RESUMEN

Single-atom nanozymes (SANs) with highly exposed active sites and remarkable catalytic activity have shown noteworthy practicability in heterogeneous catalysis-based bioassay. Nevertheless, most of them were reported with peroxidase-like activity and ordinary loading capability. It is still a challenge to prepare high-loading SANs with desirable superoxide dismutase (SOD)-like activity. In this work, Mn SAN was successfully confined in the frameworks of Prussian blue analogues formed on Ti3C2 MXene sheets with the assistance of massive surfactants, which show a superior loading efficiency of 13.5 wt % (typically <2.0 wt %). The prepared Mn SAN exhibits desirable superoxide radical anion elimination capability because of its SOD-like activity. Moreover, due to the wide-spectrum absorption behavior of the carriers, Mn SAN shows a synergistically quenching efficiency up to 98.89% on the emission of the reactive oxygen species-mediated chemiluminescent (CL) system. Inspired by these features, a CL quenching method was developed on a lateral flow test strip platform by utilizing Mn SAN as a signal quencher and acetamiprid as a model analyte. The method for detecting acetamiprid shows a detection range of 1.0-10,000 pg mL-1 and a limit of detection of 0.3 pg mL-1. Its accuracy has been validated by detecting acetamiprid in medicinal herbs with acceptable recoveries. This work opens an avenue for preparing SANs with a surfactant-assisted protocol and pioneers the study of SANs with SOD-like activity in bioassay.


Asunto(s)
Superóxido Dismutasa , Superóxidos , Superóxido Dismutasa/química , Especies Reactivas de Oxígeno , Catálisis
8.
Opt Express ; 31(13): 21192-21199, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37381224

RESUMEN

Light detection and ranging (LiDAR) is a widely utilized technology for extracting information from the outside world in fields such as automotive, robotics, and aerospace. Optical phased array (OPA) is a promising solution for LiDAR technology, although its application is limited by loss and alias-free steering range. In this paper, we propose a dual-layer antenna that achieves a peak directionality of over 92%, thereby mitigating antenna loss and enhancing power efficiency. Based on this antenna, we design and fabricate a 256-channel non-uniform OPA that achieves 150° alias-free steering.

9.
FASEB J ; 36(2): e22079, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35028975

RESUMEN

Atherosclerosis-related cardiovascular diseases are leading causes of mortality worldwide, characterized by the development of endothelial cell dysfunction, increased oxidized low-density lipoprotein uptake by macrophages, and the ensuing formation of atherosclerotic plaque. Local blood flow patterns cause uneven atherosclerotic lesion distribution, and endothelial dysfunction caused by disturbed flow is an early step in the development of atherosclerosis. The present research aims to elucidate the mechanism underlying the regulation of Neuropilin 2 (NRP2) under low shear stress (LSS) in the atheroprone phenotype of endothelial cells. We observed that NRP2 expression was significantly upregulated in LSS-stimulated human umbilical vein endothelial cells (HUVECs) and in mouse aortic endothelial cells. Knockdown of NRP2 in HUVECs significantly ameliorated cell apoptosis induced by LSS. Conversely, overexpression of NRP2 had the opposite effect on HUVEC apoptosis. Animal experiments suggest that NRP2 knockdown markedly mitigated the development of atherosclerosis in Apoe-/- mice. Mechanistically, NRP2 knockdown and overexpression regulated PARP1 protein expression in the condition of LSS, which in turn affected the expression of apoptosis-related genes. Moreover, the upstream transcription factor GATA2 was found to regulate NRP2 expression in the progression of atherosclerosis. These findings suggest that NRP2 plays an essential proatherosclerotic role through the regulation of cell apoptosis, and the results reveal that NRP2 is a promising therapeutic target for the treatment of atherosclerotic disorders.


Asunto(s)
Apoptosis/fisiología , Aterosclerosis/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neuropilina-2/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Animales , Apolipoproteínas E/metabolismo , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Placa Aterosclerótica/metabolismo , Estrés Mecánico
10.
Int Microbiol ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37987892

RESUMEN

We determined whether there exists a complementary pathway of cordycepin biosynthesis in wild-type Cordyceps militaris, high-cordycepin-producing strain C. militaris GYS60, and low-cordycepin-producing strain C. militaris GYS80. Differentially expressed genes were identified from the transcriptomes of the three strains. Compared with C. militaris, in GYS60 and GYS80, we identified 145 and 470 upregulated and 96 and 594 downregulated genes. Compared with GYS80, in GYS60, we identified 306 upregulated and 207 downregulated genes. Gene Ontology analysis revealed that upregulated genes were mostly involved in detoxification, antioxidant, and molecular transducer in GYS60. By Clusters of Orthologous Groups of Proteins and Kyoto Encyclopedia of Genes and Genomes analyses, eight genes were significantly upregulated: five genes related to purine metabolism, one to ATP production, one to secondary metabolite transport, and one to RNA degradation. In GYS60, cordycepin was significantly increased by upregulation of ATP production, which promoted 3',5'-cyclic AMP production. Cyclic AMP accelerated 3'-AMP accumulation, and cordycepin continued to be synthesized and exported. We verified the novel complementary pathway by adding the precursor adenosine and analyzing the expression of four key genes involved in the main pathway of cordycepin biosynthesis. Adenosine addition increased cordycepin production by 51.2% and 10.1%, respectively, in C. militaris and GYS60. Four genes in the main pathway in GYS60 were not upregulated.

11.
Int J Legal Med ; 137(5): 1527-1533, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37493764

RESUMEN

Radiology plays a crucial role in forensic anthropology for age estimation. However, most studies rely on morphological methods. This study aims to investigate the feasibility of using pubic bone mineral density (BMD) as a new age estimation method in the Chinese population. 468 pubic bone CT scans from living individuals in a Chinese hospital aged 18 to 87 years old were used to measure pubic BMD. The BMD of the bilateral pubic bone was measured using the Mimics software on cross-sectional CT images and the mean BMD of the bilateral pubic bone was also calculated. Regression analysis was performed to assess the correlation between pubic BMD and chronological age and to develop mathematical models for age estimation. We evaluated the accuracy of the best regression model using an independent validation sample by calculating the mean absolute error (MAE). Among all established models, the cubic regression model had the highest R2 value in both genders, with R2 = 0.550 for males and R2 = 0.634 for females. The results of the best model test showed that the MAE for predicting age using pubic BMD was 8.66 years in males and 7.69 years in females. This study highlights the potential of pubic BMD as a useful objective indicator for adult age estimation and could be used as an alternative in forensic practice when other better indicators are lacking.

12.
Analyst ; 148(24): 6261-6273, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37937546

RESUMEN

Long non-coding RNAs (lncRNA) are non-protein coding RNA molecules that are longer than 200 nucleotides. The lncRNA molecule plays diverse roles in gene regulation, chromatin remodeling, and cellular processes, influencing various biological pathways. However, probing the complex dynamics of lncRNA in live cells is a challenging task. In this study, a double-stranded gapmer locked nucleic acid (ds-GapM-LNA) nanobiosensor is designed for visualizing the abundance and expression of lncRNA in live human bone-marrow-derived mesenchymal stem cells (hMSCs). The sensitivity, specificity, and stability were characterized. The results showed that this ds-GapM-LNA nanobiosensor has very good sensitivity, specificity, and stability, which allows for dissecting the regulatory roles of cellular processes during dynamic physiological events. By incorporating this nanobiosensor in living hMSC imaging, we elucidated lncRNA MALAT1 expression dynamics during osteogenic and adipogenic differentiation. The data reveal that lncRNA MALAT1 expression is correlated with distinct sub-stages of osteogenic and adipogenic differentiation.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Diferenciación Celular/fisiología , Adipogénesis/genética , Oligonucleótidos , Osteogénesis/genética , MicroARNs/genética
13.
Fish Shellfish Immunol ; 142: 109044, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37657557

RESUMEN

Galectins are a family of evolutionarily conserved lectins that contain carbohydrate recognition domains (CRDs) specifically recognizing ß-galactoside. Galectin-9 plays a crucial role in various biological processes during pathogenic infections. In a previous study, galectin-9 was identified as a candidate gene for resistance to Vibrio harveyi disease in yellow drum using a genome-wide association study (GWAS) analysis. In this study, a galectin-9 gene was identified from Nibea albiflora and named YdGal-9. The mRNA transcripts of YdGal-9 were distributed in all the detected tissues and the highest level was found in the kidney. The subcellular localization of YdGal-9-EGFP proteins was observed in both nucleus and cytoplasm in the kidney cells of N. albiflora. The expression of YdGal-9 in the brain increased significantly after infection with Vibrio harveyi. The red blood cells from rabbits, Larimichthys crocea, and N. albiflora were agglutinated by the purified recombinant YdGal-9 proteins. The results of the agglutination activity of deletion mutants of YdGal-9 proved that the conserved sugar binding motifs (H-NPR and WG-EE-) were critical for YdGal-9's agglutination activity. In addition, YdGal-9 killed some gram-negative bacteria by inducing cell wall destruction including Pseudomonas plecoglossicida, Aeromonas hydrophila, Escherichia coli, V. parahemolyticus, V. harveyi, and V. alginolyticus. Taken together, these results suggested that the YdGal-9 protein of N. albiflora played a vital role in fighting bacterial infections.


Asunto(s)
Perciformes , Vibrio , Animales , Conejos , Estudio de Asociación del Genoma Completo , Vibrio/genética , Galectinas/química , Perciformes/genética , Filogenia , Proteínas de Peces/química
14.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835283

RESUMEN

G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and play important roles in many physiological processes. As a representative group of protozoa, ciliates represent the highest stage of eukaryotic cell differentiation and evolution in terms of their reproductive mode, two-state karyotype, and extremely diverse cytogenesis patterns. GPCRs have been poorly reported in ciliates. In this study, we identified 492 GPCRs in 24 ciliates. Using the existing classification system for animals, GPCRs in ciliates can be assigned to four families, including families A, B, E, and F. Most (377 members) belong to family A. The number of GPCRs is extremely different in different ciliates; the Heterotrichea ciliates usually have more GPCRs than other ciliates. Parasitic or symbiotic ciliates usually have only a few GPCRs. Gene/genome duplication events seem to play important roles in the expansion of the GPCR superfamily in ciliates. GPCRs in ciliates displayed seven typical domain organizations. GPCRs in an ortholog group are common and conserved in all ciliates. The gene expression analysis of the members in this conserved ortholog group in the model ciliate, Tetrahymena thermophila, suggested that these GPCRs play important roles in the life cycle of ciliates. In summary, this study provides the first comprehensive genome-wide identification of GPCRs in ciliates, improving our understanding of the evolution and function of GPCR in ciliates.


Asunto(s)
Cilióforos , Evolución Molecular , Animales , Filogenia , Receptores Acoplados a Proteínas G/genética , Genoma , Cilióforos/genética
15.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834706

RESUMEN

Galectins are proteins that are involved in the innate immune response against pathogenic microorganisms. In the present study, the gene expression pattern of galectin-1 (named as NaGal-1) and its function in mediating the defense response to bacterial attack were investigated. The tertiary structure of NaGal-1 protein consists of homodimers and each subunit has one carbohydrate recognition domain. Quantitative RT-PCR analysis indicated that NaGal-1 was ubiquitously distributed in all the detected tissues and highly expressed in the swim-bladder of Nibea albiflora, and its expression could be upregulated by the pathogenic Vibrio harveyi attack in the brain. Expression of NaGal-1 protein in HEK 293T cells was distributed in the cytoplasm as well as in the nucleus. The recombinant NaGal-1 protein by prokaryotic expression could agglutinate red blood cells from rabbit, Larimichthys crocea, and N. albiflora. The agglutination of N. albiflora red blood cells by the recombinant NaGal-1 protein was inhibited by peptidoglycan, lactose, D-galactose, and lipopolysaccharide in certain concentrations. In addition, the recombinant NaGal-1 protein agglutinated and killed some gram-negative bacteria including Edwardsiella tarda, Escherichia coli, Photobacterium phosphoreum, Aeromonas hydrophila, Pseudomonas aeruginosa, and Aeromonas veronii. These results set the stage for further studies of NaGal-1 protein in the innate immunity of N. albiflora.


Asunto(s)
Galectina 1 , Perciformes , Animales , Conejos , Galectina 1/metabolismo , Secuencia de Aminoácidos , Galectinas/metabolismo , Perciformes/genética , Inmunidad Innata , Clonación Molecular , Filogenia , Proteínas de Peces/genética
16.
Molecules ; 28(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446812

RESUMEN

Salidroside has been widely used in anti-tumor, cardiovascular, and cerebrovascular protection. However, there are few reports of its use for wound repair. Herein, salidroside inflammation-targeted emulsion gel and non-targeted emulsion gel were developed for wound repair. The inflammation-targeted emulsion gels showed an overall trend of better transdermal penetration and lower potential than non-targeted emulsion gels (-58.7 mV and -1.6 mV, respectively). The apparent improvement of the trauma surface was significant in each administration group. There was a significant difference in the rate of wound healing of the rats between each administration group and the model group at days 7 and 14. Pathological tissue sections showed that inflammatory cells in the epidermis, dermis, and basal layer were significantly reduced, and the granulation tissue was proliferated in the inflammation-targeted emulsion gel group and the non-targeted emulsion gel group. Regarding the expressions of EGF and bFGF, the expressions of bFGF and EGF in the tissues of the inflammation-targeted group at days 7, 14, or 21 were significantly higher than that of the non-targeted emulsion gel group and the model group, both of which were statistically significant compared with the model group (p < 0.05). These results demonstrated that salidroside has the potential as an alternative drug for wound repair.


Asunto(s)
Factor de Crecimiento Epidérmico , Cicatrización de Heridas , Ratas , Animales , Emulsiones , Inflamación/tratamiento farmacológico , Geles
17.
Anal Chem ; 94(27): 9610-9617, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35749272

RESUMEN

As a multidrug-resistant pathogen, Acinetobacter baumannii has long been identified as one of the most common nosocomial bacteria. High-performance recognition probes for wide-spectrum detection of A. baumannii are highly desired to achieve efficient diagnosis and timely treatment of infectious diseases induced by this pathogen. An engineering tail fiber protein (ETFP) named as Gp50 encoded by lytic phage Abp9 was expressed in Escherichia coli and identified as a binding protein for A. baumannii. According to the results of genome sequencing of an A. baumannii wild strain and phage-resistant strains, the binding receptor of ETFP Gp50 is inferred to be a lipopolysaccharide distributed on the bacterial surface. The engineering protein did not show lytic activity to A. baumannii, which facilitates the development of reliable diagnosis kits and biosensors with high flexibility and low false-negative rate. The results of specificity study show that ETFP Gp50 is a species-specific binding protein with a recognition rate of 100% for all tested 77 A. baumannii strains, while that of the natural phage Abp9 is only 27.3%. With the engineering protein, a fluorescence method was developed to detect A. baumannii with a detection range of 2.0 × 102 to 2.0 × 108 cfu mL-1. The method has been used for the quantification of A. baumannii in a diverse sample matrix with acceptable reliability. The work demonstrates the application potential of ETFP Gp50 as an ideal recognition probe for rapid screening of A. baumannii strains in a complicated sample matrix.


Asunto(s)
Acinetobacter baumannii , Bacteriófagos , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Bacteriófagos/genética , Escherichia coli/genética , Reproducibilidad de los Resultados , Virión
18.
Anal Chem ; 94(39): 13533-13539, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36150091

RESUMEN

Single atom-dispersed catalysts (SADCs) with highly exposed active sites can be used as sensitive signal probes because of their superior catalytic efficiency. However, the dispersed atoms tend to aggregate, restricting the loading capacity of metal atoms. Herein, the defective sites on Zr-oxo clusters of metal-organic frameworks (MOFs) UiO-66-NH2 were modulated by excessive acetic acid and utilized for confining metal atoms with high loading capacity. To verify the feasibility of the designed strategy, the Co element was loaded onto MOFs UiO-66-NH2 to prepare SADCs with desirable Fenton-like activity. The prepared Co SADCs at a low concentration of 1.0 µg mL-1 are found to boost chemiluminescent (CL) emission for 3700 times due to the significantly improved Co content of 5.55 wt %. The superior CL enhancement efficiency is ascribed to reactive oxygen species generated by the accelerated decay of H2O2. To verify the application potential in CL assay, they were used as signal probes to establish an immunoassay method for carbendazim with a dynamic range of 1.0 pg mL-1 to 25 ng mL-1 and a limit of detection of 0.33 pg mL-1. This defective site modulation strategy paves an avenue for preparing SADCs with a high CL response by improving the loading capacity of metal atoms.


Asunto(s)
Estructuras Metalorgánicas , Acetatos , Peróxido de Hidrógeno , Estructuras Metalorgánicas/química , Ácidos Ftálicos , Especies Reactivas de Oxígeno
19.
Anal Chem ; 94(32): 11449-11456, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35938606

RESUMEN

In view of the outstanding catalytic efficiency, single-atom catalysts (SACs) have shown great promise for the construction of sensitive chemiluminescent (CL) platforms. However, the low loading amount of active sites dramatically obstructs the improved catalytic activity of these metal SACs. Benefiting from the exceedingly unique catalytic properties of the metal-metal bonds, atomic clusters may give rise to enhancing the catalytic properties of SACs based on the synergistic effects of dual atomic-scale sites. Inspired by this, atomic Co3N clusters-assisted Co SACs (Co3N@Co SACs) were synthesized through a facile doping method. Through X-ray absorption spectroscopy, the active metal sites in the synergetic dual-site atomic catalysts of Co3N@Co SACs were confirmed to be Co-O4 and Co3-N moieties. Co3N@Co SACs served as a superior co-reactant to remarkably enhance the luminol CL signal by 2155.0 times, which was prominently superior to the boosting effect of the pure Co SACs (98.4 times). The synergetic dual-site atomic catalysts contributed to accelerating the decomposition of H2O2 into singlet oxygen as well as superoxide radical anions to display superb catalytic performances. For a concept employment, Co3N@Co SACs were attempted to utilize as CL probes for establishing a sensitive immunochromatographic assay to quantitate pesticide residues, in which imidacloprid was adopted as the model analyte. The quantitative range of imidacloprid was 0.05-10 ng mL-1 with a detection limit of 1.7 pg mL-1 (3σ). Furthermore, the satisfactory recovery values in mock herbal medicine samples demonstrated the effectiveness of the proposed Co3N@Co SAC-based CL platform. In the proof-of-concept work, synergetic dual-site atomic catalysts show great perspectives on trace analysis and luminescent biosensing.


Asunto(s)
Peróxido de Hidrógeno , Mediciones Luminiscentes , Catálisis , Peróxido de Hidrógeno/química , Luminiscencia , Mediciones Luminiscentes/métodos , Luminol/química
20.
Int J Legal Med ; 136(3): 841-852, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35258670

RESUMEN

OBJECTIVES: To assess the performance of knee MRI for forensic age prediction and classification for 12-, 14-, 16-, and 18-year thresholds. METHODS: The ossification stages of distal femoral epiphyses and proximal tibial epiphyses were assessed using an integrated staging system by Schmeling et al. and Kellinghaus et al. for knee 3.0T MRI with T1-weighted turbo spin-echo (T1-TSE) in sagittal orientation among 852 Chinese Han individuals (483 males and 369 females) aged 7-30 years. Regression models for age prediction were constructed and their performances were evaluated based on mean absolute deviation (MAD) values. In addition, the performances of age classification were assessed using receiver operating characteristic (ROC) analyses. RESULTS: The intra- and inter-observer agreement levels were very good (κ > 0.80). The complete fusion of those two types of epiphyses took place before 18.0 years in our study participants. The minimum MAD values were 2.51 years (distal femur) and 2.69 years (proximal tibia) in males, and 2.75 years (distal femur) and 2.87 years (proximal tibia) in females. The specificity values of constructed prediction models were all above 90% for the 12-, 14-, and 16-year thresholds, compared to the 74.8-84.6% for the 18-year threshold. Better performances of age prediction and classification were observed in males by distal femoral epiphyses. CONCLUSIONS: Ossification stages via 3.0T MRI of the knee with T1-TSE sequence using an integrated staging system could be a reliable noninvasive method for age prediction or for age classification for 12-, 14-, and 16-year thresholds, especially in males by distal femoral epiphyses. However, assessments based on the full bony fusion of the distal femoral epiphysis and proximal tibial epiphysis seemed not reliable for age classification for the 18-year threshold in the Chinese Han population.


Asunto(s)
Determinación de la Edad por el Esqueleto , Epífisis , Determinación de la Edad por el Esqueleto/métodos , China , Epífisis/diagnóstico por imagen , Femenino , Fémur/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Osteogénesis , Tibia/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA