Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 706: 149735, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38461647

RESUMEN

Enolase-1 (Eno1) plays a critical role in regulating glucose metabolism; however, its specific impact on pancreatic islet ß-cells remains elusive. This study aimed to provide a preliminary exploration of Eno1 function in pancreatic islet ß-cells. The findings revealed that the expression of ENO1 mRNA in type 2 diabetes donors was significantly increased and positively correlated with HbA1C and negatively correlated with insulin gene expression. A high level of Eno1 in human insulin-secreting rat INS-1832/13 cells with co-localization with intracellular insulin proteins was accordingly observed. Silencing of Eno1 using siRNA or inhibiting Eno1 protein activity with an Eno1 antagonist significantly reduced insulin secretion and insulin content in ß-cells, while the proinsulin/insulin content ratio remained unchanged. This reduction in ß-cells function was accompanied by a notable decrease in intracellular ATP and mitochondrial cytochrome C levels. Overall, our findings confirm that Eno1 regulates the insulin secretion process, particularly glucose metabolism and ATP production in the ß-cells. The mechanism primarily involves its influence on insulin production, suggesting that Eno1 represents a potential target for ß-cell protection and diabetes treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Ratas , Animales , Insulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Glucosa/metabolismo , Expresión Génica , Adenosina Trifosfato/metabolismo
2.
Plant Dis ; 107(5): 1609-1612, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36428256

RESUMEN

Streptomyces angustmyceticus CQUSa03 was recently isolated from the rhizosphere soil of a potato resistant variety, which showed strong biocontrol activity against potato late blight and other fungal diseases. To elucidate the biocontrol mechanism, the whole genome of CQUSa03 was sequenced using second-generation Illumina and third-generation Nanopore sequencing technologies. The assembled genome of CQUSa03 was 8,107,672 bp, containing one chromosome and three plasmids, with an average GC content of 72.29%, 6,914 protein-coding genes, 21 rRNA, and 68 tRNA. In addition, 29 important secondary metabolite biosynthetic gene clusters were identified in the CQUSa03 genome. The related genes of ß-1,3-glucanase and chitinase, which can degrade the cell wall of fungal pathogens, were also found. CQUSa03 is predicted to have great potential in agriculture by producing a variety of antagonistic active compounds, cell wall hydrolases, and bacteriostatic peptides to control diseases. The genome sequence provided a theoretical basis for analyzing the biocontrol mechanism of S. angustmyceticus CQUSa03 and laid a foundation for the development and industrialization of biocontrol agents.


Asunto(s)
Micosis , Oomicetos , Solanum tuberosum , Agentes de Control Biológico , Solanum tuberosum/microbiología
3.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685857

RESUMEN

Reactive oxygen species (ROS) are important regulating factors that play a dual role in plant and human cells. As the first messenger response in organisms, ROS coordinate signals in growth, development, and metabolic activity pathways. They also can act as an alarm mechanism, triggering cellular responses to harmful stimuli. However, excess ROS cause oxidative stress-related damage and oxidize organic substances, leading to cellular malfunctions. This review summarizes the current research status and mechanisms of ROS in plant and human eukaryotic cells, highlighting the differences and similarities between the two and elucidating their interactions with other reactive substances and ROS. Based on the similar regulatory and metabolic ROS pathways in the two kingdoms, this review proposes future developments that can provide opportunities to develop novel strategies for treating human diseases or creating greater agricultural value.


Asunto(s)
Células Eucariotas , Estrés Oxidativo , Humanos , Especies Reactivas de Oxígeno
4.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38203546

RESUMEN

Taxus, a vital source of the anticancer drug paclitaxel, grapples with a pronounced supply-demand gap. Current efforts to alleviate the paclitaxel shortage involve expanding Taxus cultivation through cutting propagation. However, traditional cutting propagation of Taxus is difficult to root and time-consuming. Obtaining the roots with high paclitaxel content will cause tree death and resource destruction, which is not conducive to the development of the Taxus industry. To address this, establishing rapid and efficient stem rooting systems emerges as a key solution for Taxus propagation, facilitating direct and continuous root utilization. In this study, Agrobacterium rhizogenes were induced in the 1-3-year-old branches of Taxus × media Rehder, which has the highest paclitaxel content. The research delves into the rooting efficiency induced by different A. rhizogenes strains, with MSU440 and C58 exhibiting superior effects. Transcriptome and metabolome analyses revealed A. rhizogenes' impact on hormone signal transduction, amino acid metabolism, zeatin synthesis, and secondary metabolite synthesis pathways in roots. LC-MS-targeted quantitative detection showed no significant difference in paclitaxel and baccatin III content between naturally formed and induced roots. These findings underpin the theoretical framework for T. media rapid propagation, contributing to the sustainable advancement of the Taxus industry.


Asunto(s)
Agrobacterium , Invenciones , Taxus , Taxus/genética , Tecnología , Paclitaxel/farmacología
5.
Phytopathology ; 111(11): 2067-2079, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33787286

RESUMEN

Reactive oxygen species (ROSs) are critical for the growth, development, proliferation, and pathogenicity of microbial pathogens; however, excessive levels of ROSs are toxic. Little is known about the signaling cascades in response to ROS stress in oomycetes such as Phytophthora infestans, the causal agent of potato late blight. Here, P. infestans was used as a model system to investigate the mechanism underlying the response to ROS stress in oomycete pathogens. Results showed severe defects in sporangium germination, mycelium growth, appressorium formation, and virulence of P. infestans in response to H2O2 stress. Importantly, these phenotypes mimic those of P. infestans treated with rapamycin, the inhibitor of target of rapamycin (TOR, 1-phosphatidylinositol-3-kinase). Strong synergism occurred when P. infestans was treated with a combination of H2O2 and rapamycin, suggesting that a crosstalk exists between ROS stress and the TOR signaling pathway. Comprehensive analysis of transcriptome, proteome, and phosphorylation omics showed that H2O2 stress significantly induced the operation of the TOR-mediated autophagy pathway. Monodansylcadaverine staining showed that in the presence of H2O2 and rapamycin, the autophagosome level increased in a dosage-dependent manner. Furthermore, transgenic potatoes containing double-stranded RNA of TOR in P. infestans (PiTOR) displayed high resistance to P. infestans. Therefore, TOR is involved in the ROS response and is a potential target for control of oomycete diseases, because host-mediated silencing of PiTOR increases potato resistance to late blight.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Peróxido de Hidrógeno , Enfermedades de las Plantas , Especies Reactivas de Oxígeno
6.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34768793

RESUMEN

Botany-derived antimicrobial peptides (BAMPs), a class of small, cysteine-rich peptides produced in plants, are an important component of the plant immune system. Both in vivo and in vitro experiments have demonstrated their powerful antimicrobial activity. Besides in plants, BAMPs have cross-kingdom applications in human health, with toxic and/or inhibitory effects against a variety of tumor cells and viruses. With their diverse molecular structures, broad-spectrum antimicrobial activity, multiple mechanisms of action, and low cytotoxicity, BAMPs provide ideal backbones for drug design, and are potential candidates for plant protection and disease treatment. Lots of original research has elucidated the properties and antimicrobial mechanisms of BAMPs, and characterized their surface receptors and in vivo targets in pathogens. In this paper, we review and introduce five kinds of representative BAMPs belonging to the pathogenesis-related protein family, dissect their antifungal, antiviral, and anticancer mechanisms, and forecast their prospects in agriculture and global human health. Through the deeper understanding of BAMPs, we provide novel insights for their applications in broad-spectrum and durable plant disease prevention and control, and an outlook on the use of BAMPs in anticancer and antiviral drug design.


Asunto(s)
Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/farmacología , Agricultura , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Antivirales/farmacología , Diseño de Fármacos/métodos , Humanos , Inmunidad de la Planta/efectos de los fármacos , Plantas/efectos de los fármacos , Virus/efectos de los fármacos
7.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066497

RESUMEN

Autophagy is an intracellular process in all eukaryotes which is responsible for the degradation of cytoplasmic constituents, recycling of organelles, and recycling of proteins. It is an important cellular process responsible for the effective virulence of several pathogenic plant fungal strains, having critical impacts on important crop plants including potatoes. However, the detailed physiological mechanisms of autophagy involved in the infection biology of soil-borne pathogens in the potato crop needs to be investigated further. In this study, the autophagy-related gene, FoATG12, in potato dry rot fungus Fusarium oxysporum was investigated by means of target gene replacement and overexpression. The deletion mutant ∆FoATG12 showed reduction in conidial formation and exhibited impaired aerial hyphae. The FoATG12 affected the expression of genes involved in pathogenicity and vegetative growth, as well as on morphology features of the colony under stressors. It was found that the disease symptoms were delayed upon being inoculated by the deletion mutant of FoATG12 compared to the wild-type (WT) and overexpression (OE), while the deletion mutant showed the disease symptoms on tomato plants. The results confirmed the significant role of the autophagy-related ATG12 gene in the production of aerial hyphae and the effective virulence of F. oxysporum in the potato crop. The current findings provid an enhanced gene-level understanding of the autophagy-related virulence of F. oxysporum, which could be helpful in pathogen control research and could have vital impacts on the potato crop.


Asunto(s)
Proteína 12 Relacionada con la Autofagia/genética , Autofagia/genética , Proteínas Fúngicas/genética , Fusarium/citología , Fusarium/genética , Genes Fúngicos , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/patogenicidad , Regulación Fúngica de la Expresión Génica , Hifa/crecimiento & desarrollo , Mutación/genética , Fenotipo , Enfermedades de las Plantas/genética , Esporas Fúngicas/crecimiento & desarrollo , Estrés Fisiológico/genética
8.
Phytopathology ; 110(8): 1398-1409, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32228378

RESUMEN

Nonribosomal peptide synthetases (NPS) are known for the biosynthesis of antibiotics, toxins, and siderophore production. They are also a virulence determinant in different phytopathogens. However, until now, the functional characterization of NPS in Verticillium dahliae has not been reported. Deletion of the NPS gene in V. dahliae led to the decrease of conidia, microsclerotia, and pathogenicity. ΔVdNPS strains were tolerant to H2O2, and the genes involved in H2O2 detoxification, iron/copper transport, and cytoskeleton were differentially expressed in ΔVdNPS. Interestingly, ΔVdNPS strains exhibited hypersensitivity to salicylic acid (SA), and the genes involved in SA hydroxylation were up-regulated in ΔVdNPS compared with wild-type V. dahliae under SA stress. Additionally, during infection, ΔVdNPS induced more pathogenesis-related gene expression, higher reactive oxygen species production, and stronger SA-mediated signaling transduction in host to overcome pathogen. Uncovering the function of VdNPS in pathogenicity could provide a reliable theoretical basis for the development of cultivars with durable resistance against V. dahliae-associated diseases.


Asunto(s)
Verticillium , Proteínas Fúngicas , Peróxido de Hidrógeno , Péptido Sintasas , Enfermedades de las Plantas , Virulencia
9.
Fungal Genet Biol ; 126: 25-36, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30710746

RESUMEN

Verticillium dahliae is a soil-borne, hemibiotrophic phytopathogenic fungus that causes Verticillium wilt in a broad range of economic crops. The microsclerotia (MS), which act as the main host inoculum, can survive long-term in soil resulting in uncontrollable disease. In order to clarify the mechanism of MS formation, we sequenced the whole genome-wide expression profile of V. dahliae strain V991. Compared with M1 (no MS formation), during the process of MS formation and maturation, 1354, 1571, and 1521 unique tags were significantly regulated in M2, M3, and M4 library, respectively. During MS formation, melanin synthesis-related genes were preferentially upregulated. The process is more likely to regulated by transcription factors (TFs) including C2H2, Zn2Cys6, bZIP, and fungal-specific TF domain-containing proteins; additionally, G-protein coupled receptors, Ca2+, small GTPases, and cAMP were involved in signalling transduction. Protein kinase-encoding (VDAG_06474) and synthase-encoding (VDAG_05314) genes were demonstrated to negatively and positively influence MS production, respectively. The gene expression dynamics revealed during MS formation provide comprehensive theoretical knowledge to further understanding of the metabolism and regulation of MS development in V. dahliae, potentially providing targets to control Verticillium wilt through interfering MS formation.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Transcriptoma , Verticillium/genética , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Biblioteca de Genes , Enfermedades de las Plantas/microbiología , Factores de Transcripción/genética
10.
J Pineal Res ; 65(2): e12492, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29575191

RESUMEN

Human health, food safety, and agriculture have been threatened by oomycetic diseases caused by notorious pathogenic oomycetes. Chemical oomyceticides are the main approaches in control of pathogenic oomycetes. However, the overused chemical oomyceticides have resulted in serious environmental pollution and drug resistance. The eco-friendly bio-oomyceticides are required for sustainable development through screening synergistic drug combinations. In this study, Phytophthora nicotianae (P. nicotianae), as one of the most destructive oomycetic diseases in agriculture, was used as a model system to screen the novel bio-oomyceticides based on drug combination. The results showed that treatment of melatonin or ethylicin (IUPAC Name: 1-ethylsulfonylsulfanylethane) alone displayed similar phenotypes such as the inhibition of the hyphal growth, reduction of the cell viability, and suppression of the virulence of P. nicotianae. Importantly, melatonin and ethylicin shared the same targets of interfering with the amino acid metabolism, overexpressing apoptosis-inducing factor, and dysregulating the virulence-related genes. Furthermore, strong synergism against P. nicotianae was induced by combining melatonin with ethylicin. Under treatment of the combination of melatonin and ethylicin, the expression of genes associated with amino acid, the apoptosis-inducing factor, and the virulence-related genes was much more significantly dysregulated than that of single drug treatment. Thus, the tobacco black shank caused by P. nicotianae can be successfully controlled using the combination of melatonin and ethylicin. These observations suggest that the synergistic effect based on the combination of melatonin and ethylicin is an eco-friendly alternative for the control of the destructive oomycetic diseases.


Asunto(s)
Resistencia a Medicamentos/efectos de los fármacos , Fungicidas Industriales/farmacología , Melatonina/farmacología , Phytophthora/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Ácidos Sulfínicos/farmacología , Phytophthora/genética
11.
Mol Vis ; 23: 666-679, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28966549

RESUMEN

PURPOSE: It is well known that the dopaminergic signaling pathway plays a pivotal role in the control of axial elongation. Much research has shown that retinal dopamine (DA) is decreased in experimental myopia, but the exact alteration in DA quantity underlying the myopia model induced by flickering light (FL) has not yet been fully elucidated. Therefore, in this study, we first attempted to prove the feasibility of the myopia model induced by FL and then to determine whether and how DA and its receptors changed in myopia induced by FL. METHODS: Forty-five 2-week-old guinea pigs were randomly divided into three groups, as follows: the control group, form-deprivation myopia (FDM) group, and FL-induced myopia (FLM) group. Animals in the control and FDM groups were raised under normal illumination, and the right eyes of the FDM group were covered with semitransparent hemispherical plastic shells serving as eye diffusers. Guinea pigs in the FLM group were raised under illumination with a duty cycle of 50% at a flash rate of 0.5 Hz. The refraction, axial length (AL), and corneal radius of curvature (CRC) were measured using streak retinoscopy, A-scan ultrasonography, and keratometry, respectively, before and after 2, 4, 6, and 8 weeks of treatment. The contents of DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in the retina, vitreous body, and RPE were measured at the end of the 8-week experiment using high-performance liquid chromatography (HPLC). The numbers of retinal D1 DA receptor (D1DR) and D2 DA receptor (D2DR) were evaluated via immunohistofluorescence and western blot assay. RESULTS: The refraction of the FLM group became more myopic throughout the experimental period, which was mainly indicated by decreased refraction and a longer AL compared with the control group (p<0.05). The contents of DA, DOPAC, and HVA in the retina, vitreous body, and RPE of the FLM group were significantly increased, but decreased in the FDM group, compared with those of the control group (both p<0.05). Like form-deprived eyes, the expressions of retinal D1DR and D2DR in FL eyes were significantly upregulated compared with controls (p<0.05). CONCLUSIONS: Myopia can be induced by 0.5-Hz FL in guinea pigs at puberty. Contrary to FDM, dopaminergic neuron activity and DA release were significantly elevated in FLM. Like in FDM, the expressions of D1DR and D2DR were upregulated in FLM. Thus, the results of our study may further demonstrate that the DA system is associated with the development of myopia.


Asunto(s)
Modelos Animales de Enfermedad , Dopamina/metabolismo , Luz/efectos adversos , Miopía/etiología , Retina/efectos de la radiación , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Longitud Axial del Ojo/patología , Western Blotting , Cromatografía Líquida de Alta Presión , Córnea/patología , Técnica del Anticuerpo Fluorescente Indirecta , Cobayas , Ácido Homovanílico/metabolismo , Miopía/metabolismo , Estimulación Luminosa , Refracción Ocular , Retina/metabolismo , Cuerpo Vítreo/metabolismo
12.
Appl Microbiol Biotechnol ; 101(3): 1073-1084, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27587300

RESUMEN

Psc-AFP, isolated from the seeds of Psoralea corylifolia L., is an antimicrobial protein with trypsin inhibitor activity. Its encoding gene was cloned by 3'- rapid amplification of cDNA ends (RACE) combined with Y-shaped adaptor-dependent extension (YADE) method. The gene Psc-AFP encodes a protein of 203 amino acids with a deduced signal peptide of 24 residues. The growth inhibition effect exerted by the heterologously expressed Psc-AFP in Pichia pastoris revealed that the recombinant Psc-AFP inhibited mycelium growth of Aspergillus niger, Rhizoctonia solani, and Alternaria brassicae and conidial germination of Alternaria alternata. The recombinant Psc-AFP also showed protease inhibitor activity manifested by the inhibition of trypsin. The transgenic tobacco bioassays confirmed that overexpressing Psc-AFP significantly enhanced the disease resistance of tobacco and that some of the transgenic lines were almost fully tolerant to Ralstonia solanacearum and A. alternata, whereas no apparent alteration in plant growth and development was observed. Collectively, these results indicate that the recombinant Psc-AFP is an active antimicrobial protein, with protease inhibitor activity that can be successfully produced in the yeast and tobacco and, therefore, maybe a potential antimicrobial candidate for practical use.


Asunto(s)
Antifúngicos/farmacología , Nicotiana/microbiología , Pichia/genética , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/genética , Proteínas de Plantas/farmacología , Psoralea/genética , Secuencia de Aminoácidos , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Aspergillus niger/efectos de los fármacos , Clonación Molecular , Biología Computacional , Resistencia a la Enfermedad , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Psoralea/anatomía & histología , Psoralea/química , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Rhizoctonia/efectos de los fármacos , Análisis de Secuencia de Proteína , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Inhibidores de Tripsina/química , Inhibidores de Tripsina/aislamiento & purificación , Inhibidores de Tripsina/farmacología
13.
14.
J Bioenerg Biomembr ; 48(3): 189-96, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26782277

RESUMEN

Mitochondrial dysfunction is a hallmark of amyloid ß peptide (Aß)-induced neuronal toxicity in Alzheimer's disease (AD). However, the precise mechanism(s) of Aß-induced mitochondrial dysfunction has not been fully understood. There is evidence that Forkhead box O3a (FOXO3a) is normally present in neuronal mitochondria. Using HT22 murine hippocampal neuronal cells and primary hippocampal neurons, the present study investigated whether mitochondrial FOXO3a was involved in mitochondrial dysfunction induced by Aß. It was found that Aß induced dephosphorylation and mitochondrial translocation of FOXO3a. In addition, Aß enhanced association of FOXO3a with mitochondrial DNA (mtDNA), causing a decrease in the expression of cytochrome c oxidase subunit 1 (COX1) and the activity of COX. In addition, Aß-induced mitochondrial dysfunction, indicated by the decrease in 3- (4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) conversion, mitochondrial adenosine triphosphate (ATP) production and COX activity, could be suppressed by knockdown of FOXO3a (FOXO3a-KD). These results provide new insights into the mechanism underlying Aß-induced neurotoxicity and open up new therapeutic perspectives for AD.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Proteína Forkhead Box O3/fisiología , Mitocondrias/metabolismo , Adenosina Trifosfato/biosíntesis , Enfermedad de Alzheimer , Péptidos beta-Amiloides/farmacología , Animales , Línea Celular , Células Cultivadas , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteína Forkhead Box O3/metabolismo , Hipocampo/patología , Ratones , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Neuronas/metabolismo , Neuronas/patología , Fosforilación/efectos de los fármacos , Prostaglandina-Endoperóxido Sintasas/metabolismo
15.
Appl Microbiol Biotechnol ; 98(16): 6921-32, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24928658

RESUMEN

Verticillium dahliae is a soil-borne phytopathogenic fungus that causes vascular wilt diseases in a wide variety of crop plants, resulting in extensive economic losses. In the past 5 years, progress has been made in elaborating the interaction between this hemibiotrophic fungus and its host plants. Some genes responsible for the vegetative growth and/or pathogenicity in V. dahliae have been identified. Plants have accrued a series of defense mechanisms, including inducible defense signaling pathways and some resistant genes to combat V. dahliae infection. Here, we have reviewed the progress in V. dahliae-plant interaction research.


Asunto(s)
Interacciones Huésped-Patógeno , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Plantas/inmunología , Plantas/microbiología , Verticillium/fisiología , Verticillium/crecimiento & desarrollo , Verticillium/patogenicidad
16.
Nat Plants ; 10(5): 771-784, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684916

RESUMEN

The fall armyworm (FAW) poses a significant threat to global crop production. Here we showed that overexpression of jasmonate ZIM-domain (JAZ) protein GhJAZ24 confers resistance to cotton bollworm and FAW, while also causing sterility in transgenic cotton by recruiting TOPLESS and histone deacetylase 6. We identified the NGR motif of GhJAZ24 that recognizes and binds the aminopeptidase N receptor, enabling GhJAZ24 to enter cells and disrupt histone deacetylase 3, leading to cell death. To overcome plant sterility associated with GhJAZ24 overexpression, we developed iJAZ (i, induced), an approach involving damage-induced expression and a switch from intracellular to extracellular localization of GhJAZ24. iJAZ transgenic cotton maintained fertility and showed insecticidal activity against cotton bollworm and FAW. In addition, iJAZ transgenic rice, maize and tobacco plants showed insecticidal activity against their lepidopteran pests, resulting in an iJAZ-based approach for generating alternative insecticidal proteins with distinctive mechanisms of action, thus holding immense potential for future crop engineering.


Asunto(s)
Productos Agrícolas , Gossypium , Mariposas Nocturnas , Plantas Modificadas Genéticamente , Animales , Productos Agrícolas/genética , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/genética , Gossypium/genética , Gossypium/parasitología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/parasitología , Zea mays/genética , Zea mays/parasitología , Nicotiana/genética , Nicotiana/parasitología
17.
Ophthalmol Ther ; 12(2): 1195-1206, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36786967

RESUMEN

INTRODUCTION: This study aimed to investigate anterior segment parameters of eyes, with anterior chamber depth (ACD) less than 2.8 mm and axial length greater than 25.0 mm. METHODS: This cross-sectional study included 180 myopic eyes of 180 consecutive patients with axial length greater than 25.0 mm. Patients were divided into low ACD (ACD < 2.8 mm, n = 56) and normal ACD (ACD ≥ 2.8 mm, n = 124) groups. Anterior segment parameters were measured using Scheimpflug imaging and ultrasound biomicroscopy. A general linear model was used to compare parameters between the two groups, after adjusting for age and spherical equivalent. RESULTS: Compared with the normal ACD group, the low ACD group had lower values for the following parameters: corneal diameter, trabecular-anterior iris surface angle, angle-opening distance at 500 µm, anterior chamber volume, anterior chamber width, anterior vault, iris thickness at 500 µm, ciliary sulcus-to-sulcus diameter, distance between cornea and sulcus, trabecular-ciliary process distance, maximum ciliary body thickness, ciliary process length, relative anterior vault, relative distance between cornea and sulcus, and relative lens position (general linear model, p < 0.05). In contrast, central corneal thickness, iris curvature, lens thickness, lens vault, and iris-ciliary angle were greater in the low ACD group (general linear model, p < 0.05). CONCLUSION: A smaller anterior segment, as well as a thicker and more anteriorly positioned lens, may correlate with shallow ACD in eyes with long axial length.

18.
J Photochem Photobiol B ; 242: 112692, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36958087

RESUMEN

Ligusticum chuanxiong Hort. (Chuanxiong) is an important Chinese medicinal herb, whose rhizomes are widely used as raw materials for treating various diseases caused by blood stasis. The fresh tender stems and leaves of Chuanxiong are also consumed and have the potential as microgreens. Here, we investigated the effect of light spectra on yield and total flavonoid content of Chuanxiong microgreens by treatment with LED-based white light (WL), red light (RL), blue light (BL), and continuous darkness (DD). The results showed that WL and BL reduced biomass accumulation but significantly increased total flavonoid content compared to RL or DD treatments. Widely targeted metabolomics analysis confirmed that BL promoted the accumulation of flavones and flavonols in Chuanxiong microgreens. Further integration of transcriptomics and metabolomics analysis revealed the mechanism by which BL induces the up-regulation of transcription factors such as HY5 and MYBs, promotes the expression of key genes targeted for flavonoid biosynthesis, and ultimately leads to the accumulation of flavones and flavonols. This study suggests that blue light is a proper light spectra to improve the quality of Chuanxiong microgreens, and the research results lay a foundation for guiding the de-etiolation of Chuanxiong microgreens to obtain both yield and quality in production practice.


Asunto(s)
Flavonas , Ligusticum , Flavonoles , Transcriptoma , Flavonoides , Metabolómica
19.
J Agric Food Chem ; 71(51): 20613-20624, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38100671

RESUMEN

Pathogenic oomycetes infect a wide variety of organisms, including plants, animals, and humans, and cause massive economic losses in global agriculture, aquaculture, and human health. Salicylic acid (SA), an endogenous phytohormone, is regarded as an inducer of plant immunity. Here, the potato late blight pathogen Phytophthora infestans was used as a model system to uncover the inhibitory mechanisms of SA on pathogenic oomycetes. In this research, SA significantly inhibited the mycelial growth, sporulation, sporangium germination, and virulence of P. infestans. Inhibition was closely related to enhanced autophagy, suppression of translation initiation, and ribosomal biogenesis in P. infestans, as shown by multiomics analysis (transcriptomics, proteomics, and phosphorylated proteomics). Monodansylcadaverine (MDC) staining and Western blotting analysis showed that SA promoted autophagy in P. infestans by probably targeting the TOR signaling pathway. These observations suggest that SA has the potential to control late blight caused by P. infestans.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Humanos , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Enfermedades de las Plantas , Solanum tuberosum/metabolismo
20.
J Adv Res ; 43: 13-26, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36585103

RESUMEN

INTRODUCTION: During the arms race between plants and pathogens, pathogenesis-related proteins (PR) in host plants play a crucial role in disease resistance, especially PR1. PR1 constitute a secretory peptide family, and their role in plant defense has been widely demonstrated in both hosts and in vitro. However, the mechanisms by which they control host-pathogen interactions and the nature of their targets within the pathogen remain poorly understood. OBJECTIVES: The present study was aimed to investigate the anti-oomycete activity of secretory PR1 proteins and elaborate their underlying mechanisms. METHODS: This study was conducted in the potato-Phytophthora infestans pathosystem. After being induced by the pathogen infection, the cross-kingdom translocation of secretory PR1 was demonstrated by histochemical assays and western blot, and their targets in P. infestans were identified by yeast-two-hybrid assays, bimolecular fluorescence complementation assays, and co-immunoprecipitation assay. RESULTS: The results showed that the expression of secretory PR1-encoding genes was induced during pathogen infection, and the host could deliver PR1 into P. infestans to inhibit its vegetative growth and pathogenicity. The translocated secretory PR1 targeted the subunits of the AMPK kinase complex in P. infestans, thus affecting the AMPK-driven phosphorylation of downstream target proteins, preventing ROS homeostasis, and down-regulating the expression of RxLR effectors. CONCLUSION: The results provide novel insights into the molecular function of PR1 in protecting plants against pathogen infection, and uncover a potential target for preventing pre- and post-harvest late blight.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Phytophthora infestans , Plantas , Phytophthora infestans/genética , Interacciones Huésped-Patógeno , Resistencia a la Enfermedad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA