Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Development ; 148(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33722901

RESUMEN

How the body and organs balance their relative growth is of key importance for coordinating size and function. This is of particular relevance in organisms, which continue to grow over their entire life span. We addressed this issue in the neuroretina of medaka fish (Oryzias latipes), a well-studied system with which to address vertebrate organ growth. We reveal that a central growth regulator, Igf1 receptor (Igf1r), is necessary and sufficient for proliferation control in the postembryonic retinal stem cell niche: the ciliary marginal zone (CMZ). Targeted activation of Igf1r signaling in the CMZ uncouples neuroretina growth from body size control, and we demonstrate that Igf1r operates on progenitor cells, stimulating their proliferation. Activation of Igf1r signaling increases retinal size while preserving its structural integrity, revealing a modular organization in which progenitor differentiation and neurogenesis are self-organized and highly regulated. Our findings position Igf signaling as a key module for controlling retinal size and composition, with important evolutionary implications.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Oryzias/crecimiento & desarrollo , Receptor IGF Tipo 1/metabolismo , Retina/crecimiento & desarrollo , Transducción de Señal , Células Madre/fisiología , Animales , Animales Modificados Genéticamente , Ciclo Celular , Diferenciación Celular/fisiología , División Celular/fisiología , Proliferación Celular , Autorrenovación de las Células , Factor I del Crecimiento Similar a la Insulina/genética , Neurogénesis , Oryzias/embriología , Oryzias/genética , Receptor IGF Tipo 1/genética , Retina/citología , Nicho de Células Madre , Células Madre/citología , Vertebrados
2.
Development ; 145(21)2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30337377

RESUMEN

Patterning of a continuously growing naive field in the context of a life-long growing organ such as the teleost eye is of high functional relevance. Intrinsic and extrinsic signals have been proposed to regulate lineage specification in progenitors that exit the stem cell niche in the ciliary marginal zone (CMZ). The proper cell-type composition arising from those progenitors is a prerequisite for retinal function. Our findings in the teleost medaka (Oryzias latipes) uncover that the Notch-Atoh7 axis continuously patterns the CMZ. The complement of cell types originating from the two juxtaposed progenitors marked by Notch or Atoh7 activity contains all constituents of a retinal column. Modulation of Notch signalling specifically in Atoh7-expressing cells demonstrates the crucial role of this axis in generating the correct cell-type proportions. After transiently blocking Notch signalling, retinal patterning and differentiation is re-initiated de novo Taken together, our data show that Notch activity in the CMZ continuously structures the growing retina by juxtaposing Notch and Atoh7 progenitors that give rise to distinct complementary lineages, revealing coupling of de novo patterning and cell-type specification in the respective lineages.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Oryzias/crecimiento & desarrollo , Oryzias/metabolismo , Receptores Notch/metabolismo , Retina/crecimiento & desarrollo , Retina/metabolismo , Transducción de Señal , Células Amacrinas/citología , Células Amacrinas/metabolismo , Animales , Recuento de Células , Linaje de la Célula , Embrión no Mamífero/metabolismo , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Modelos Biológicos , Retina/citología , Células Bipolares de la Retina/citología , Células Bipolares de la Retina/metabolismo , Células Madre/metabolismo
3.
Development ; 143(11): 1874-83, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27068106

RESUMEN

Regenerative responses in the vertebrate CNS depend on quiescent radial glia stem cells, which re-enter the cell cycle and eventually differentiate into neurons. The entry into the cell cycle and the differentiation into neurons are events of opposite nature, and therefore efforts to force quiescent radial glia into neurons require different factors. Here, we use fish to show that a single neurogenic factor, Atoh7, directs retinal radial glia (Müller glia, MG) into proliferation. The resulting neurogenic clusters differentiate in vivo into various retinal neurons. We use signaling reporters to demonstrate that the Atoh7-induced regeneration-like response of MG cells is mimicked by Notch, resembling the behavior of early progenitors during retinogenesis. Activation of Notch signaling in MG cells is sufficient to trigger proliferation and differentiation. Our results uncover a new role for Atoh7 as a universal neurogenic factor, and illustrate how signaling modules are re-employed in diverse contexts to trigger different biological responses.


Asunto(s)
Células Ependimogliales/metabolismo , Marcación de Gen , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuroglía/metabolismo , Oryzias/metabolismo , Animales , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Cilios/metabolismo , Células Clonales , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Dominios Proteicos , Receptores Notch/química , Receptores Notch/metabolismo , Retina/metabolismo , Retina/patología , Transducción de Señal
4.
Development ; 141(18): 3472-82, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25142461

RESUMEN

The potency of post-embryonic stem cells can only be addressed in the living organism, by labeling single cells after embryonic development and following their descendants. Recently, transplantation experiments involving permanently labeled cells revealed multipotent neural stem cells (NSCs) of embryonic origin in the medaka retina. To analyze whether NSC potency is affected by developmental progression, as reported for the mammalian brain, we developed an inducible toolkit for clonal labeling and non-invasive fate tracking. We used this toolkit to address post-embryonic stem cells in different tissues and to functionally differentiate transient progenitor cells from permanent, bona fide stem cells in the retina. Using temporally controlled clonal induction, we showed that post-embryonic retinal NSCs are exclusively multipotent and give rise to the complete spectrum of cell types in the neural retina. Intriguingly, and in contrast to any other vertebrate stem cell system described so far, long-term analysis of clones indicates a preferential mode of asymmetric cell division. Moreover, following the behavior of clones before and after external stimuli, such as injuries, shows that NSCs in the retina maintained the preference for asymmetric cell division during regenerative responses. We present a comprehensive analysis of individual post-embryonic NSCs in their physiological environment and establish the teleost retina as an ideal model for studying adult stem cell biology at single cell resolution.


Asunto(s)
División Celular/fisiología , Linaje de la Célula/fisiología , Células Madre Multipotentes/fisiología , Células-Madre Neurales/fisiología , Oryzias/fisiología , Retina/citología , Animales , Animales Modificados Genéticamente , Clonación Molecular , Proteínas Fluorescentes Verdes , Integrasas/genética , Integrasas/metabolismo
5.
Front Immunol ; 13: 812899, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185906

RESUMEN

Organized intestinal mucosal immune response appears to be restricted to tetrapods. In teleost fish, there is no evidence for the existence of a particular intestinal region that facilitates the interaction of antigen-presenting cells (APCs) and T cells, such as secondary lymphoid organs. Indeed, despite their importance in the defense against pathogens, the location and manner of APC-T cell interaction within the fish gut is unknown. Here, using non-invasive live imaging of newly developed transgenic reporter lines, we addressed the spatial organization and behavior of APCs and T cells in the intestine of medaka fish both during homeostasis and inflammation. We report that Ccr9a+ T cells are recruited to a band in the lamina propria next to the muscularis mucosa in which Ccl25-expressing cells are present. Ccr9a+ T cells contact APCs for several minutes, in a process mediated by connexin 43. This type of interaction was observed in homeostasis and inflammation, with the interaction being longer and more frequent during inflammation. Thus, our results demonstrate that the mucosal immune response in the intestine of medaka is organized and endowed with a specific region with specialized microenvironment and function.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Mucosa Intestinal/inmunología , Linfocitos T/inmunología , Animales , Quimiocinas CC/metabolismo , Oryzias/inmunología , Receptores CCR/metabolismo
6.
Science ; 377(6610): eabp9262, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36048956

RESUMEN

Salamanders are tetrapod models to study brain organization and regeneration; however, the identity and evolutionary conservation of brain cell types are largely unknown. We delineated the cell populations in the axolotl telencephalon during homeostasis and regeneration using single-cell genomic profiling. We identified glutamatergic neurons with similarities to amniote neurons of hippocampus, dorsal and lateral cortex, and conserved γ-aminobutyric acid-releasing (GABAergic) neuron classes. We inferred transcriptional dynamics and gene regulatory relationships of postembryonic, region-specific neurogenesis and unraveled conserved differentiation signatures. After brain injury, ependymoglia activate an injury-specific state before reestablishing lost neuron populations and axonal connections. Together, our analyses yield insights into the organization, evolution, and regeneration of a tetrapod nervous system.


Asunto(s)
Ambystoma mexicanum , Evolución Biológica , Regeneración Cerebral , Neurogénesis , Neuronas , Telencéfalo , Ambystoma mexicanum/fisiología , Animales , Neurogénesis/genética , Neuronas/fisiología , Análisis de la Célula Individual , Telencéfalo/citología , Telencéfalo/fisiología
7.
Genome Biol ; 23(1): 59, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189950

RESUMEN

BACKGROUND: Unraveling the relationship between genetic variation and phenotypic traits remains a fundamental challenge in biology. Mapping variants underlying complex traits while controlling for confounding environmental factors is often problematic. To address this, we establish a vertebrate genetic resource specifically to allow for robust genotype-to-phenotype investigations. The teleost medaka (Oryzias latipes) is an established genetic model system with a long history of genetic research and a high tolerance to inbreeding from the wild. RESULTS: Here we present the Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel: the first near-isogenic panel of 80 inbred lines in a vertebrate model derived from a wild founder population. Inbred lines provide fixed genomes that are a prerequisite for the replication of studies, studies which vary both the genetics and environment in a controlled manner, and functional testing. The MIKK panel will therefore enable phenotype-to-genotype association studies of complex genetic traits while allowing for careful control of interacting factors, with numerous applications in genetic research, human health, drug development, and fundamental biology. CONCLUSIONS: Here we present a detailed characterization of the genetic variation across the MIKK panel, which provides a rich and unique genetic resource to the community by enabling large-scale experiments for mapping complex traits.


Asunto(s)
Oryzias , Animales , Genoma , Endogamia , Oryzias/genética , Fenotipo
8.
Genome Biol ; 23(1): 58, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189951

RESUMEN

BACKGROUND: The teleost medaka (Oryzias latipes) is a well-established vertebrate model system, with a long history of genetic research, and multiple high-quality reference genomes available for several inbred strains. Medaka has a high tolerance to inbreeding from the wild, thus allowing one to establish inbred lines from wild founder individuals. RESULTS: We exploit this feature to create an inbred panel resource: the Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel. This panel of 80 near-isogenic inbred lines contains a large amount of genetic variation inherited from the original wild population. We use Oxford Nanopore Technologies (ONT) long read data to further investigate the genomic and epigenomic landscapes of a subset of the MIKK panel. Nanopore sequencing allows us to identify a large variety of high-quality structural variants, and we present results and methods using a pan-genome graph representation of 12 individual medaka lines. This graph-based reference MIKK panel genome reveals novel differences between the MIKK panel lines and standard linear reference genomes. We find additional MIKK panel-specific genomic content that would be missing from linear reference alignment approaches. We are also able to identify and quantify the presence of repeat elements in each of the lines. Finally, we investigate line-specific CpG methylation and performed differential DNA methylation analysis across these 12 lines. CONCLUSIONS: We present a detailed analysis of the MIKK panel genomes using long and short read sequence technologies, creating a MIKK panel-specific pan genome reference dataset allowing for investigation of novel variation types that would be elusive using standard approaches.


Asunto(s)
Oryzias , Animales , Epigenómica , Genoma , Genómica/métodos , Humanos , Oryzias/genética
9.
Dev Neurobiol ; 79(5): 424-436, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30600647

RESUMEN

Regeneration of lost cells in the central nervous system, especially the brain, is present to varying degrees in different species. In mammals, neuronal cell death often leads to glial cell hypertrophy, restricted proliferation, and formation of a gliotic scar, which prevents neuronal regeneration. Conversely, amphibians such as frogs and salamanders and teleost fish possess the astonishing capacity to regenerate lost cells in several regions of their brains. While frogs lose their regenerative abilities after metamorphosis, teleost fish and salamanders are known to possess regenerative competence even throughout adulthood. In the last decades, substantial progress has been made in our understanding of the cellular and molecular mechanisms of brain regeneration in amphibians and fish. But how similar are the means of brain regeneration in these different species? In this review, we provide an overview of common and distinct aspects of brain regeneration in frog, salamander, and teleost fish species: from the origin of regenerated cells to the functional recovery of behaviors.


Asunto(s)
Anfibios/inmunología , Anfibios/fisiología , Encéfalo/fisiopatología , Peces/lesiones , Peces/fisiología , Regeneración Nerviosa/fisiología , Animales , Lesiones Encefálicas/fisiopatología , Metamorfosis Biológica/fisiología , Especificidad de la Especie
10.
Elife ; 72018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29376827

RESUMEN

Regeneration responses in animals are widespread across phyla. To identify molecular players that confer regenerative capacities to non-regenerative species is of key relevance for basic research and translational approaches. Here, we report a differential response in retinal regeneration between medaka (Oryzias latipes) and zebrafish (Danio rerio). In contrast to zebrafish, medaka Müller glia (olMG) cells behave like progenitors and exhibit a restricted capacity to regenerate the retina. After injury, olMG cells proliferate but fail to self-renew and ultimately only restore photoreceptors. In our injury paradigm, we observed that in contrast to zebrafish, proliferating olMG cells do not maintain sox2 expression. Sustained sox2 expression in olMG cells confers regenerative responses similar to those of zebrafish MG (drMG) cells. We show that a single, cell-autonomous factor reprograms olMG cells and establishes a regeneration-like mode. Our results position medaka as an attractive model to delineate key regeneration factors with translational potential.


Asunto(s)
Células Ependimogliales/fisiología , Oryzias/fisiología , Regeneración , Retina/fisiología , Pez Cebra/fisiología , Animales , Proliferación Celular , Reprogramación Celular , Retina/lesiones
11.
Methods Mol Biol ; 1472: 157-68, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27671939

RESUMEN

One of the most frequently executed tasks for molecular biologists is the design and generation of complex DNA constructs. Recently, we established the Golden GATEway cloning kit for the fast and efficient generation of transgenesis vectors. This cloning kit allows the modular assembly of DNA fragments in a defined order. The modularity reflects how complex transgenesis constructs are set up. For example, genome modification tools such as the Cre-Lox system utilize small recombination elements that are combined with larger open reading frames and noncoding regulatory DNA. Another example is that proteinogenic genes can be extended with different localisation tags or fluorescent markers. The Golden GATEway cloning kit allows focusing on the design of a transgenesis construct without having to compromise it by so far available cloning strategies. Here, we provide a step-by-step introduction on how to use the Golden GATEway cloning kit.


Asunto(s)
Clonación Molecular , Secuencia de Bases , ADN Recombinante/genética , Vectores Genéticos/genética
12.
PLoS One ; 8(10): e76117, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24116091

RESUMEN

The design and generation of DNA constructs is among the necessary but generally tedious tasks for molecular biologists and, typically, the cloning strategy is restricted by available restriction sites. However, increasingly sophisticated experiments require increasingly complex DNA constructs, with an intricacy that exceeds what is achievable using standard cloning procedures. Many transgenes such as inducible gene cassettes or recombination elements consist of multiple components that often require precise in-frame fusions. Here, we present an efficient protocol that facilitates the generation of these complex constructs. The golden GATEway cloning approach presented here combines two established cloning methods, namely golden Gate cloning and Multisite Gateway(TM) cloning. This allows efficient and seamless assembly as well as reuse of predefined DNA elements. The golden Gate cloning procedure follows clear and simple design rules and allows the assembly of multiple fragments with different sizes into one open reading frame. The final product can be directly integrated into the widely used Multisite Gateway(TM) cloning system, granting more flexibility when using a transgene in the context of multiple species. This adaptable and streamlined cloning procedure overcomes restrictions of "classical construct generation" and allows focusing on construct design.


Asunto(s)
Clonación Molecular/métodos , ADN Recombinante , Vectores Genéticos , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA