Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 627(8004): 564-571, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418889

RESUMEN

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Asunto(s)
Biodiversidad , Bosques , Mapeo Geográfico , Árboles , Modelos Biológicos , Especificidad de la Especie , Árboles/clasificación , Árboles/fisiología , Clima Tropical
2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34400503

RESUMEN

Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.


Asunto(s)
Fertilidad , Modelos Biológicos , Regeneración , Árboles/crecimiento & desarrollo , Bosques
3.
Pediatr Diabetes ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37929231

RESUMEN

Objective: Using continuous glucose monitoring (CGM), we examined patterns in glycemia during school hours for children with type 1 diabetes, exploring differences between school and non-school time. Methods: We conducted a retrospective analysis of CGM metrics in children 7-12 years (n=217, diabetes duration 3.5±2.5 years, hemoglobin A1c 7.5±0.8%). Metrics were obtained for weekday school hours (8 AM to 3 PM) during four weeks in fall 2019. Two comparison settings included weekend (fall 2019) and weekday (spring 2020) data when children had transitioned to virtual school due to COVID-19. We used multilevel mixed models to examine factors associated with time in range (TIR) and compare glycemia between in-school, weekends, and virtual school. Results: Though CGM metrics were clinically similar across settings, TIR was statistically higher, and time above range (TAR), mean glucose, and standard deviation (SD) lower, for weekends and virtual school (p<0.001). Hour and setting exhibited a significant interaction for several metrics (p<0.001). TIR in-school improved from a mean of 40.9% at the start of the school day to 58.0% later in school, with a corresponding decrease in TAR. TIR decreased on weekends (60.8 to 50.7%) and virtual school (62.2 to 47.8%) during the same interval. Mean glucose exhibited a similar pattern, though there was little change in SD. Younger age (p=0.006), lower hemoglobin A1c (p<0.001), and insulin pump use (p=0.02) were associated with higher TIR in-school. Conclusion: Although TIR was higher for weekends and virtual school, glycemic metrics improve while in-school, possibly related to beneficial school day routines.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Niño , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hemoglobina Glucada , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea , Estudios Retrospectivos
4.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460530

RESUMEN

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Asunto(s)
Bosques , Árboles , Biodiversidad , Clima , Fertilidad , Semillas
5.
New Phytol ; 234(5): 1664-1677, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35201608

RESUMEN

Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1-10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.


Asunto(s)
Carbono , Clima Tropical , Biomasa , Temperatura , Madera
6.
Glob Chang Biol ; 28(1): 245-266, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34653296

RESUMEN

Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.


Asunto(s)
Cambio Climático , Bosques , Biomasa , Clima , Temperatura
7.
Glob Chang Biol ; 28(9): 2895-2909, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35080088

RESUMEN

The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.


Asunto(s)
Cambio Climático , Clima Tropical , Biomasa , Demografía , Ecosistema
8.
PLoS Comput Biol ; 17(4): e1008853, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33914731

RESUMEN

When Darwin visited the Galapagos archipelago, he observed that, in spite of the islands' physical similarity, members of species that had dispersed to them recently were beginning to diverge from each other. He postulated that these divergences must have resulted primarily from interactions with sets of other species that had also diverged across these otherwise similar islands. By extrapolation, if Darwin is correct, such complex interactions must be driving species divergences across all ecosystems. However, many current general ecological theories that predict observed distributions of species in ecosystems do not take the details of between-species interactions into account. Here we quantify, in sixteen forest diversity plots (FDPs) worldwide, highly significant negative density-dependent (NDD) components of both conspecific and heterospecific between-tree interactions that affect the trees' distributions, growth, recruitment, and mortality. These interactions decline smoothly in significance with increasing physical distance between trees. They also tend to decline in significance with increasing phylogenetic distance between the trees, but each FDP exhibits its own unique pattern of exceptions to this overall decline. Unique patterns of between-species interactions in ecosystems, of the general type that Darwin postulated, are likely to have contributed to the exceptions. We test the power of our null-model method by using a deliberately modified data set, and show that the method easily identifies the modifications. We examine how some of the exceptions, at the Wind River (USA) FDP, reveal new details of a known allelopathic effect of one of the Wind River gymnosperm species. Finally, we explore how similar analyses can be used to investigate details of many types of interactions in these complex ecosystems, and can provide clues to the evolution of these interactions.


Asunto(s)
Evolución Biológica , Bosques , Árboles , Análisis por Conglomerados , Fenómenos Ecológicos y Ambientales , Modelos Biológicos , Filogenia
9.
Ecol Appl ; 32(2): e2507, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34870871

RESUMEN

In an emerging era of megadisturbance, bolstering forest resilience to wildfire, insects, and drought has become a central objective in many western forests. Climate has received considerable attention as a driver of these disturbances, but few studies have examined the complexities of climate-vegetation-disturbance interactions. Current strategies for creating resilient forests often rely on retrospective approaches, seeking to impart resilience by restoring historical conditions to contemporary landscapes, but historical conditions are becoming increasingly unattainable amidst modern bioclimatic conditions. What becomes an appropriate benchmark for resilience when we have novel forests, rapidly changing climate, and unprecedented disturbance regimes? We combined two longitudinal datasets-each representing some of the most comprehensive spatially explicit, annual tree mortality data in existence-in a post-hoc factorial design to examine the nonlinear relationships between fire, climate, forest spatial structure, and bark beetles. We found that while prefire drought elevated mortality risk, advantageous local neighborhoods could offset these effects. Surprisingly, mortality risk (Pm ) was higher in crowded local neighborhoods that burned in wet years (Pm  = 42%) compared with sparse neighborhoods that burned during drought (Pm  = 30%). Risk of beetle attack was also increased by drought, but lower conspecific crowding impeded the otherwise positive interaction between fire and beetle attack. Antecedent fire increased drought-related mortality over short timespans (<7 years) but reduced mortality over longer intervals. These results clarify interacting disturbance dynamics and provide a mechanistic underpinning for forest restoration strategies. Importantly, they demonstrate the potential for managed fire and silvicultural strategies to offset climate effects and bolster resilience to fire, beetles, and drought.


Asunto(s)
Incendios , Árboles , Cambio Climático , Bosques , Distanciamiento Físico , Estudios Retrospectivos
10.
Glob Chang Biol ; 26(12): 6974-6988, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32926493

RESUMEN

Forest ecosystems are an important sink for terrestrial carbon sequestration. Hence, accurate modeling of the intra- and interannual variability of forest photosynthetic productivity remains a key objective in global biology. Applying climate-driven leaf phenology and growth in models may improve predictions of the forest gross primary productivity (GPP). We used a dynamic non-structural carbohydrates (NSC) model (FORCCHN2) that couples leaf development and phenology to investigate the relationships among photosynthesis and environmental factors. FORCCHN2 simulates spring and autumn phenological events from heat and chilling, respectively. Leaf area index data from satellites along with climate data estimated localized phenological parameters. NSC limitation, immediate temperature, accumulated heat, and growth potential comprised a daily leaf-growth model. Functionally, leaf growth was decoupled from photosynthesis. Leaf biomass determined overall photosynthetic production. We compared this model with outputs of the other six terrestrial biospheric models and with observations from the North American Carbon Program Site Interim Synthesis in 18 forest sites. This model improved the predicted performance of yearly GPP with a 57%-210% increase in correlation (median) and up to a 102% reduction in biases (median), compared to three prognostic models and three prescribed models. At the North America continental scale, the model predicted the average annual GPP of 7.38 Pg C/year from forest ecosystems during 1985-2016. The results showed an increasing trend of GPP in North America (1.0 Pg C/decade). The inclusion of climate-driven phenology and growth has a significant potential for improving dynamic vegetation models, and promotes a further understanding of the complex relationship between environment and photosynthesis.


Asunto(s)
Ecosistema , Bosques , Clima , América del Norte , Fotosíntesis , Hojas de la Planta , Estaciones del Año , Estados Unidos
11.
Ecol Lett ; 22(2): 245-255, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30548766

RESUMEN

Climate is widely recognised as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesised relationships amongst climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.


Asunto(s)
Biodiversidad , Árboles , Clima
12.
Glob Chang Biol ; 25(11): 3985-3994, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31148284

RESUMEN

Wildfire is an essential earth-system process, impacting ecosystem processes and the carbon cycle. Forest fires are becoming more frequent and severe, yet gaps exist in the modeling of fire on vegetation and carbon dynamics. Strategies for reducing carbon dioxide (CO2 ) emissions from wildfires include increasing tree harvest, largely based on the public assumption that fires burn live forests to the ground, despite observations indicating that less than 5% of mature tree biomass is actually consumed. This misconception is also reflected though excessive combustion of live trees in models. Here, we show that regional emissions estimates using widely implemented combustion coefficients are 59%-83% higher than emissions based on field observations. Using unique field datasets from before and after wildfires and an improved ecosystem model, we provide strong evidence that these large overestimates can be reduced by using realistic biomass combustion factors and by accurately quantifying biomass in standing dead trees that decompose over decades to centuries after fire ("snags"). Most model development focuses on area burned; our results reveal that accurately representing combustion is also essential for quantifying fire impacts on ecosystems. Using our improvements, we find that western US forest fires have emitted 851 ± 228 Tg CO2 (~half of alternative estimates) over the last 17 years, which is minor compared to 16,200 Tg CO2 from fossil fuels across the region.


Asunto(s)
Incendios , Incendios Forestales , Ecosistema , Bosques , Árboles
13.
Oecologia ; 191(4): 909-918, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31624959

RESUMEN

Spatial patterns can inform us of forest recruitment, mortality, and tree interactions through time and disturbance. Specifically, successional trajectories of self-thinning and heterospecific negative density dependence can be interpreted from the spatial arrangement of forest stems. We conducted a 50-year spatial analysis of a forest undergoing succession at the ecotone of the southwestern Canadian boreal forest. The forest progressed from early to late sere and experienced repeated severe droughts, forest tent caterpillar outbreaks (Malacosoma disstria), as well as the outbreak of bark beetles. Cumulatively, the forest lost 70% of stems due to natural succession and a combination of disturbance events. Here, we describe spatial patterns displaying signals of successional self-thinning, responses to disturbance, and changes in patterns of density dependence across 50 years. Forest succession and disturbance events resulted in fluctuating patterns of density-dependent mortality and recruitment that persisted into late seral stages. The combined effects of conspecific and heterospecific density-dependent effects on mortality and recruitment resulted in near-spatial equilibrium over the study period. However, the strength and direction of these demographic and spatial processes varied in response with time and disturbance severity. The outbreak of forest tent caterpillar, pronounced drought, and bark beetles combined to reduce stand aggregation and promote a spatial equilibrium. Density-dependent processes of competition and facilitation changed in strength and direction with succession of the plot and in combination with disturbance. Together these results reinforce the importance of successional stage and disturbance to spatial patterns.


Asunto(s)
Bosques , Árboles , Canadá , Sequías , Análisis Espacial
14.
Ecol Appl ; 27(5): 1498-1513, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28370925

RESUMEN

Historical forest conditions are often used to inform contemporary management goals because historical forests are considered to be resilient to ecological disturbances. The General Land Office (GLO) surveys of the late 19th and early 20th centuries provide regionally quasi-contiguous data sets of historical forests across much of the Western United States. Multiple methods exist for estimating tree density from point-based sampling such as the GLO surveys, including distance-based and area-based approaches. Area-based approaches have been applied in California mixed-conifer forests but their estimates have not been validated. To assess the accuracy and precision of plotless density estimators with potential for application to GLO data in this region, we imposed a GLO sampling scheme on six mapped forest stands of known densities (159-784 trees/ha) in the Sierra Nevada in California, USA, and Baja California Norte, Mexico. We compared three distance-based plotless density estimators (Cottam, Pollard, and Morisita) as well as two Voronoi area (VA) estimators, the Delincé and mean harmonic Voronoi density (MHVD), to the true densities. We simulated sampling schemes of increasing intensity to assess sampling error. The relative error (RE) of density estimates for the GLO sampling scheme ranged from 0.36 to 4.78. The least biased estimate of tree density in every stand was obtained with the Morisita estimator and the most biased was obtained with the MHVD estimator. The MHVD estimates of tree density were 1.2-3.8 times larger than the true densities and performed best in stands subject to fire exclusion for 100 yr. The Delincé approach obtained accurate estimates of density, implying that the Voronoi approach is theoretically sound but that its application in the MHVD was flawed. The misapplication was attributed to two causes: (1) the use of a crown scaling factor that does not correct for the number of trees sampled and (2) the persistent underestimate of the true VA due to a weak relationship between tree size and VA. The magnitude of differences between true densities and MHVD estimates suggest caution in using results based on the MHVD to inform management and restoration practices in the conifer forests of the American West.


Asunto(s)
Agricultura Forestal/métodos , Bosques , Árboles/fisiología , California , México , Modelos Biológicos , Modelos Estadísticos , Densidad de Población
15.
Ecology ; 97(11): 3244, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27870045

RESUMEN

Megafires have lasting social, ecological, and economic impacts and are increasing in the western contiguous United States. Because of their infrequent nature, there is a limited sample of megafires to investigate their unique behavior, drivers, and relationship to forest management practices. One approach is to characterize critical information pre-, during, and post-fire using remote sensing. In August 2013, the Rim Fire burned 104,131 ha and in September 2014, the King Fire burned 39,545 ha. Both fires occurred in California's Sierra Nevada. The areas burned by these fires were fortuitously surveyed by airborne campaigns, which provided the most recent remote sensing technologies not currently available from satellite. Technologies include an imaging spectrometer spanning the visible to shortwave infrared (0.38-2.5 µm), a multispectral, high-spatial resolution thermal infrared (3.5-13 µm) spectroradiometer, and Light Detection and Ranging that provide spatial resolutions of pixels from 1 × 1 m to 35 × 35 m. Because of the unique information inherently derived from these technologies before the fires, the areas were subsequently surveyed after the fires. We processed and provide free dissemination of these airborne datasets as products of surface reflectance, spectral metrics and forest structural metrics ( http://dx.doi.org/10.3334/ORNLDAAC/1288). These data products provide a unique opportunity to study relationships among and between remote sensing observations and fuel and fire characteristics (e.g., fuel type, condition, structure, and fire severity). The novelty of these data is not only in the unprecedented types of information available from them before, during, and after two megafires, but also in the synergistic use of multiple state of the art technologies for characterizing the environment. The synergy of these data can provide novel information that can improve maps of fuel type, structure, abundance, and condition that may improve predictions of megafire behavior and effects, thus aiding management before, during, and after such events. Key questions that these data could address include: What drives, extinguishes, and results from megafires? How does megafire behavior relate to fire and fuel management? How does the size and severity of a megafire affect the ecological recovery of the system?


Asunto(s)
Incendios , Imágenes Satelitales , California , Espectrofotometría Infrarroja
16.
Bioscience ; 66(2): 130-146, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29593361

RESUMEN

Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process. Fire science has been, and continues to be, performed in isolated "silos," including institutions (e.g., agencies versus universities), organizational structures (e.g., federal agency mandates versus local and state procedures for responding to fire), and research foci (e.g., physical science, natural science, and social science). These silos tend to promote research, management, and policy that focus only on targeted aspects of the "wicked" wildfire problem. In this article, we provide guiding principles to bridge diverse fire science efforts to advance an integrated agenda of wildfire research that can help overcome disciplinary silos and provide insight on how to build fire-resilient communities.

17.
Ecology ; 96(11): 2855-61, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27070005

RESUMEN

Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young (< 60-year-old) and old-growth (> 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time.


Asunto(s)
Abies/fisiología , Bosques , Longevidad/fisiología , Árboles/fisiología , Densidad de Población
18.
Ecology ; 95(8): 2047-54, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25230456

RESUMEN

Mortality processes in old-growth forests are generally assumed to be driven by gap-scale disturbance, with only a limited role ascribed to density-dependent mortality, but these assumptions are rarely tested with data sets incorporating repeated measurements. Using a 12-ha spatially explicit plot censused 13 years apart in an approximately 500-year-old Pseudotsuga-Tsuga forest, we demonstrate significant density-dependent mortality and spatially aggregated tree recruitment. However, the combined effect of these strongly nonrandom demographic processes was to maintain tree patterns in a state of dynamic equilibrium. Density-dependent mortality was most pronounced for the dominant late-successional species, Tsuga heterophylla. The long-lived, early-seral Pseudotsuga menziesii experienced an annual stem mortality rate of 0.84% and no new recruitment. Late-seral species Tsuga and Abies amabilis had nearly balanced demographic rates of ingrowth and mortality. The 2.34% mortality rate for Taxus brevifolia was higher than expected, notably less than ingrowth, and strongly affected by proximity to Tsuga. Large-diameter Tsuga structured both the regenerating conspecific and heterospecific cohorts with recruitment of Tsuga and Abies unlikely in neighborhoods crowded with large-diameter competitors (P < 0.001). Density-dependent competitive interactions strongly shape forest communities even five centuries after stand initiation, underscoring the dynamic nature of even equilibrial old-growth forests.


Asunto(s)
Pseudotsuga/fisiología , Árboles/fisiología , Tsuga/fisiología , Ecosistema , Modelos Biológicos
20.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230016, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38583471

RESUMEN

Forest diversity is the outcome of multiple species-specific processes and tolerances, from regeneration, growth, competition and mortality of trees. Predicting diversity thus requires a comprehensive understanding of those processes. Regeneration processes have traditionally been overlooked, due to high stochasticity and assumptions that recruitment is not limiting for forests. Thus, we investigated the importance of seed production and seedling survival on forest diversity in the Pacific Northwest (PNW) using a forest gap model (ForClim). Equations for regeneration processes were fit to empirical data and added into the model, followed by simulations where regeneration processes and parameter values varied. Adding regeneration processes into ForClim improved the simulation of species composition, compared to Forest Inventory Analysis data. We also found that seed production was not as important as seedling survival, and the time it took for seedlings to grow into saplings was a critical recruitment parameter for accurately capturing tree species diversity in PNW forest stands. However, our simulations considered historical climate only. Due to the sensitivity of seed production and seedling survival to weather, future climate change may alter seed production or seedling survival and future climate change simulations should include these regeneration processes to predict future forest dynamics in the PNW. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Asunto(s)
Bosques , Árboles , Biodiversidad , Plantones , Noroeste de Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA