Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
EMBO Rep ; 25(2): 544-569, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177926

RESUMEN

The cGAS/STING pathway triggers inflammation upon diverse cellular stresses such as infection, cellular damage, aging, and diseases. STING also triggers noncanonical autophagy, involving LC3 lipidation on STING vesicles through the V-ATPase-ATG16L1 axis, as well as induces cell death. Although the proton pump V-ATPase senses organelle deacidification in other contexts, it is unclear how STING activates V-ATPase for noncanonical autophagy. Here we report a conserved channel function of STING in proton efflux and vesicle deacidification. STING activation induces an electron-sparse pore in its transmembrane domain, which mediates proton flux in vitro and the deacidification of post-Golgi STING vesicles in cells. A chemical ligand of STING, C53, which binds to and blocks its channel, strongly inhibits STING-mediated proton flux in vitro. C53 fully blocks STING trafficking from the ER to the Golgi, but adding C53 after STING arrives at the Golgi allows for selective inhibition of STING-dependent vesicle deacidification, LC3 lipidation, and cell death, without affecting trafficking. The discovery of STING as a channel opens new opportunities for selective targeting of canonical and noncanonical STING functions.


Asunto(s)
Autofagia , Protones , Autofagia/fisiología , Canales Iónicos/genética , Muerte Celular , Adenosina Trifosfatasas
2.
J Cell Sci ; 135(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35899529

RESUMEN

During Hedgehog signaling, the ciliary levels of Ptch1 and Smo are regulated by the pathway. At the basal state, Ptch1 localizes to cilia and prevents the ciliary accumulation and activation of Smo. Upon binding a Hedgehog ligand, Ptch1 exits cilia, relieving inhibition of Smo. Smo then concentrates in cilia, becomes activated and activates downstream signaling. Loss of the ubiquitin E3 ligase Arih2 elevates basal Hedgehog signaling, elevates the cellular level of Smo and increases basal levels of ciliary Smo. Mice express two isoforms of Arih2 with Arih2α found primarily in the nucleus and Arih2ß found on the cytoplasmic face of the endoplasmic reticulum (ER). Re-expression of ER-localized Arih2ß but not nuclear-localized Arih2α rescues the Arih2 mutant phenotypes. When Arih2 is defective, protein aggregates accumulate in the ER and the unfolded protein response is activated. Arih2ß appears to regulate the ER-associated degradation (ERAD) of Smo preventing excess and potentially misfolded Smo from reaching the cilium and interfering with pathway regulation.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Proteínas Hedgehog , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Ratones , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Ubiquitinación
3.
Metab Eng ; 83: 172-182, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38648878

RESUMEN

Microbial bioengineering is a growing field for producing plant natural products (PNPs) in recent decades, using heterologous metabolic pathways in host cells. Once heterologous metabolic pathways have been introduced into host cells, traditional metabolic engineering techniques are employed to enhance the productivity and yield of PNP biosynthetic routes, as well as to manage competing pathways. The advent of computational biology has marked the beginning of a novel epoch in strain design through in silico methods. These methods utilize genome-scale metabolic models (GEMs) and flux optimization algorithms to facilitate rational design across the entire cellular metabolic network. However, the implementation of in silico strategies can often result in an uneven distribution of metabolic fluxes due to the rigid knocking out of endogenous genes, which can impede cell growth and ultimately impact the accumulation of target products. In this study, we creatively utilized synthetic biology to refine in silico strain design for efficient PNPs production. OptKnock simulation was performed on the GEM of Saccharomyces cerevisiae OA07, an engineered strain for oleanolic acid (OA) bioproduction that has been reported previously. The simulation predicted that the single deletion of fol1, fol2, fol3, abz1, and abz2, or a combined knockout of hfd1, ald2 and ald3 could improve its OA production. Consequently, strains EK1∼EK7 were constructed and cultivated. EK3 (OA07△fol3), EK5 (OA07△abz1), and EK6 (OA07△abz2) had significantly higher OA titers in a batch cultivation compared to the original strain OA07. However, these increases were less pronounced in the fed-batch mode, indicating that gene deletion did not support sustainable OA production. To address this, we designed a negative feedback circuit regulated by malonyl-CoA, a growth-associated intermediate whose synthesis served as a bypass to OA synthesis, at fol3, abz1, abz2, and at acetyl-CoA carboxylase-encoding gene acc1, to dynamically and autonomously regulate the expression of these genes in OA07. The constructed strains R_3A, R_5A and R_6A had significantly higher OA titers than the initial strain and the responding gene-knockout mutants in either batch or fed-batch culture modes. Among them, strain R_3A stand out with the highest OA titer reported to date. Its OA titer doubled that of the initial strain in the flask-level fed-batch cultivation, and achieved at 1.23 ± 0.04 g L-1 in 96 h in the fermenter-level fed-batch mode. This indicated that the integration of optimization algorithm and synthetic biology approaches was efficiently rational for PNP-producing strain design.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Simulación por Computador , Técnicas de Silenciamiento del Gen , Terpenos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Environ Res ; 252(Pt 3): 118874, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579995

RESUMEN

3-Methylindole (Skatole), a degradation product of tryptophan produced by intestinal microbial activity, significantly contributes to odor nuisance. Its adverse effects on animal welfare, human health, and environmental pollution have been noted. However, it is still unclear whether the intestinal microbiota mediates the impact of selenium (Se) on skatole production and what the underlying mechanisms remain elusive. A selenized glucose (SeGlu) derivative is a novel organic selenium compound. In this study, a diverse range of dietary SeGlu-treated levels, including SeGlu-deficient (CK), SeGlu-adequate (0.15 mg Se per L), and SeGlu-supranutritional (0.4 mg Se per L) conditions, were used to investigate the complex interaction of SeGlu on intestinal microbiome and serum metabolome changes in male Sprague-Dawley (SD) rats. The study showed that SeGlu supplementation enhanced the antioxidant ability in rats, significantly manifested in the increases of the activity of catalase (CAT) and glutathione peroxidase (GSH-Px), while no change in the level of malonaldehyde (MDA). Metagenomic sequencing analysis verified that the SeGlu treatment group significantly increased the abundance of beneficial microorganisms such as Clostridium, Ruminococcus, Faecalibacterium, Lactobacillus, and Alloprevotella while reducing the abundance of opportunistic pathogens such as Bacteroides and Alistipes significantly. Further metabolomic analysis revealed phenylalanine, tyrosine, and tryptophan biosynthesis changes in the SeGlu treatment group. Notably, the biosynthesis of indole, a critical pathway, was affected by SeGlu treatment, with several crucial enzymes implicated. Correlation analysis demonstrated strong associations between specific bacterial species - Treponema, Bacteroides, and Ruminococcus, and changes in indole and derivative concentrations. Moreover, the efficacy of SeGlu-treated fecal microbiota was confirmed through fecal microbiota transplantation, leading to a decrease in the concentration of skatole in rats. Collectively, the analysis of microbiota and metabolome response to diverse SeGlu levels suggests that SeGlu is a promising dietary additive in modulating intestinal microbiota and reducing odor nuisance in the livestock and poultry industry.


Asunto(s)
Microbioma Gastrointestinal , Glucosa , Ratas Sprague-Dawley , Escatol , Triptófano , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Escatol/metabolismo , Masculino , Triptófano/metabolismo , Ratas , Glucosa/metabolismo , Selenio/farmacología , Dieta
5.
Ecotoxicol Environ Saf ; 269: 115799, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070414

RESUMEN

The expression of Cry proteins in genetically modified rice varieties safeguards the crop from lepidopteran pests. These proteins have the potential to be transferred through the food chain to arthropods like planthoppers and predatory spiders, triggering defensive responses in these unintended organisms. Hence, we hypothesized that Cry protein might influence the growth and development of spiders by altering protective enzyme activities. The results showed that Cry1Ab protein could accumulate in tissues and subcellular organelles of Pardosa pseudoannulata from Nilaparvata lugens. Cry1Ab protein exposure prolonged the developmental duration in the 5th and 7th instar spiderlings but induced no alterations of other growth indicators, such as body length, median ocular area, and survival rate. In addition, Cry1Ab protein exerted no adverse impacts on several detoxifying enzymes (i.e., superoxide dismutase, catalase, glutathione peroxidase, and acetylcholine esterase) in muscle, midgut, ganglia, and hemolymph at subcellular components (i.e., microsome and cytoplasm). To further explore the effects of Cry1Ab protein on the spiderlings, we performed an integrated transcriptome analysis on spiderlings exposed to Cry1Ab protein. The results showed that Cry1Ab protein might prolong the development duration of P. pseudoannulata via the altered cuticle metabolism (e.g., chitin metabolic process and structural constituent of cuticle). In addition, the gene expression profile associated with detoxifying enzymes and three stress-responsive pathways (JAK/STAT, JNK/SAPK, and Hippo pathways) also displayed no significant alterations under Cry1Ab exposure. Collectively, this integrated analysis generates multidimensional insights to assess the effects of Cry1Ab protein on non-target spiders and demonstrates that Cry1Ab protein exerts no toxicity in P. pseudoannulata.


Asunto(s)
Animales Ponzoñosos , Hemípteros , Arañas , Animales , Hemípteros/metabolismo , Superóxido Dismutasa/metabolismo , Crecimiento y Desarrollo
6.
Biol Reprod ; 108(5): 709-719, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36892411

RESUMEN

With the development of the embryo, the totipotent blastomere undergoes the first lineage decision to the inner cell mass (ICM) and the trophectoderm (TE). The ICM forms the fetus while the TE forms the placenta, which is one of the unique organs in mammals serving as the interface between maternal and fetal bloodstreams. Proper trophoblast lineage differentiation is crucial for correct placental and fetal development, including the TE progenitor self-renewal and its differentiation toward mononuclear cytotrophoblast, which later either develops into invasive extravillous trophoblast, remodeling the uterine vascular, or fuses into multinuclear syncytiotrophoblast, secreting pregnancy-sustaining hormone. Aberrant differentiation and gene expression of trophoblast lineage is associated with severe pregnancy disorders and fetal growth restriction. This review focuses on the early differentiation and key regulatory factors of trophoblast lineage, which have been poorly elucidated. Meanwhile, the recent development of trophoblast stem cells, trophectoderm stem cells, and blastoids derived from pluripotent stem cells bring the accessible model to investigate the profound mystery of embryo implantation and placentation and were also summarized.


Asunto(s)
Células Madre Pluripotentes , Trofoblastos , Animales , Embarazo , Femenino , Humanos , Trofoblastos/metabolismo , Placenta/metabolismo , Placentación/genética , Diferenciación Celular/genética , Expresión Génica , Mamíferos
7.
Opt Express ; 31(1): 492-501, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36606983

RESUMEN

Exceptional points (EPs), the critical phase transition points of non-Hermitian parity-time (PT) systems, exhibit many novel physical properties and associated applications, such as ultra-sensitive detection of perturbations. Here, a bilayer metasurface with two orthogonally oriented split-ring resonators (SRRs) is proposed and a phase transition of the eigenpolarization states is introduced via changing the conductivity of vanadium dioxide (VO2) patch integrated into the gap of one SRR. The metasurface possesses a passive PT symmetry and an EP in polarization space is observed at a certain conductivity of the VO2. Two sensing schemes with the metasurface are proposed to achieve high-sensitivity sensing of temperature and refractive index in the terahertz (THz) range. The metasurface is promising for applications in THz biosensing and polarization manipulation.

8.
BMC Public Health ; 23(1): 1540, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573398

RESUMEN

BACKGROUND: China's family doctor contracting service is an important part of deepening the reform of the healthcare systems, aiming to further develop chronic disease management services, enhance the capacity of primary health care services and improve the health of residents. The purpose of this study was to explore the influence of multiple chronic conditions in the elderly on family doctor contracting and whether socioeconomic status played a moderating role. METHODS: A cross-sectional survey was conducted in Beijing, China. A total of 1814 elderly people over 60 years old were included in this study using a whole-group sampling method. The univariate analysis and logistic regression analysis was used to analyze the data. RESULTS: 21.72% of the elderly signed up with family doctors. The multiple chronic conditions was a factor influencing the elderly to sign up with family doctors (OR = 1.44, 95%CI = 1.28-1.61), and the higher the degree of multiple chronic conditions, the stronger willingness to sign up. Socioeconomic status positively moderates the effect of multiple chronic conditions on signing. Also, physical activity intensity (OR = 1.25, 95%CI = 1.03-1.54) and willingness to first visit primary care facilities (OR = 1.38, 95%CI = 1.25-1.54) influenced the elderly to sign up with family doctors. CONCLUSIONS: The elderly with a high degree of multiple chronic conditions, high activity intensity, and a strong willingness to first visit primary care facilities were more likely to sign up with family doctors. The health literacy of the elderly should be further improved, and publicity on the family doctor contracting service policies for the elderly with lower socioeconomic status should be strengthened to guide them to sign up with family doctors. At the same time, the service capacity of primary care facilities should be further improved to meet the health needs of the elderly.


Asunto(s)
Afecciones Crónicas Múltiples , Humanos , Anciano , Persona de Mediana Edad , Estudios Transversales , Médicos de Familia , Clase Social , China
9.
Plant Dis ; 107(8): 2446-2452, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36724097

RESUMEN

Sharp eyespot, a soil-borne disease of wheat (Triticum aestivum L.), is one of the most devastating diseases and severely affects grain production. The most efficient and economical method of controlling the disease is the utilization of genetic resistance. In this study, the wheat-Psathyrostachys huashanica introgression line H83 processed the enhanced resistance to Rhizoctonia cerealis isolate R0301 than its wheat parent 7182. A resistance locus in the 600 to 800 Mb interval of chromosome 2BL was screened using 244 segregation population F2 plants of H83×Huixianhong with bulked segregant analysis and wheat axiom 660K genotyping array. Furthermore, by using 12 kompetitive allele-specific PCR markers, a major resistance gene, designated as Qse.xn-2BL, was identified in a secondary segregating population with 138 F3:4 lines and initially mapped to a 765.6 to 775.5 Mb interval on chromosome 2BL. Molecular cytology analysis revealed that H83 probably has an alien introgression at the distal of chromosome 2BL, where it overlapped with the mapping target gene. Above all, H83 showed great potential to improve wheat resistance to sharp eyespot and can be expected to improve resistance in wheat breeding.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Resistencia a la Enfermedad/genética , Poaceae/genética , Alelos
10.
J Environ Manage ; 348: 119351, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37862894

RESUMEN

Recovering inner residual carbon is important for fully utilizing coal gasification fine slag (CGFS) resources. In this study, we adopted a combined gravity-separation and flotation process to efficiently recover residual carbon by considering the characteristics of the CGFS and optimizing the operating factors of the process. CGFS is principally a mixture of residual carbon and ash, with low-density particles containing more of the former. Accordingly, residual carbon is preliminarily enriched by gravity separation, in which gas velocity (vg) and water velocity (vw) significantly impact separation efficiency, followed by feed volume (m). The residual carbon in the initial concentrate was preliminarily enriched (i.e., loss on ignition (LOI): 55.90%; combustible recovery (Ro): 72.36%) under appropriate operating conditions (i.e., vw = 0.04 m/s, vg = 3 m/s, m = 150 g). Moreover, the quality of the flotation concentrate was most influenced by collector dosage (mc), followed by aeration rate (η), frother dosage (mf), stirring speed (w), and grinding time (t) during flotation of the primary concentrate. The flotation concentrate exhibited LOI and Ro values of 90.95% and 50.34%, respectively, under the optimal flotation conditions (i.e., mc = 20 kg/t, mf = 15 kg/t, w = 2600 rad/min, η = 200 L/h, t = 360 s); it has a high residual carbon content and is an ideal raw material for preparing fuels or carbon materials.


Asunto(s)
Carbono , Carbón Mineral , Carbón Mineral/análisis , Ceniza del Carbón
11.
Molecules ; 28(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36677712

RESUMEN

Background: Homocysteine (Hcy) has been found to be closely related to the occurrence of diabetes mellitus (DM) and is considered as one of the risk factors of DM. However, Hcy alone is not enough as a factor to predict DM, and our study analyzed and determined the relationship between the main metabolites involved in the Hcy metabolic pathway and DM. Methods: A total of 48 clinical samples were collected, including 18 health control samples and 30 DM samples. All standards and samples were detected by LC-QTOF-MS. Multivariate statistical analysis and k-means cluster analysis were performed to screen and confirm the metabolites significantly correlated with DM. Results: A total of 13 metabolites of the Hcy metabolic pathway were detected in the samples. The content of Hcy, cysteine, taurine, pyridoxamine, methionine, and choline were significantly increased in the DM group (p < 0.05). Hcy, choline, cystathionine, methionine, and taurine contributed significantly to the probabilistic principal component analysis (PPCA) model. The odds ratios (OR) of Hcy, cysteine, taurine, methionine, and choline were all greater than one. K-means cluster analysis showed that the Hcy, taurine, methionine, and choline were significantly correlated with the distribution of glucose values (divided into four levels: 10.5−11.7 mmol/L, 7.7−9.7 mmol/L, 6.0−6.9 mmol/L, and 5.0−5.9 mmol/L, respectively). Conclusion: Hcy, taurine, methionine, and choline can be used as risk factors for diabetes diagnosis and are expected to be used for the assessment of diabetes severity.


Asunto(s)
Diabetes Mellitus , Homocisteína , Humanos , Homocisteína/metabolismo , Cisteína/metabolismo , Metionina/metabolismo , Racemetionina/metabolismo , Colina , Redes y Vías Metabólicas , Taurina
12.
Metab Eng ; 70: 143-154, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35091067

RESUMEN

Plant flavonoids are secondary metabolites containing a benzo-γ-pyrone structure, which are widely present in plants and have a variety of physiological and pharmacological activities. However, current flavonoid production from plant extraction or chemical synthesis does not meet the requirements of green and sustainable development. Fortunately, microbial synthesis of flavonoids has shown the potential for large-scale production with the advantages of being controllable and environmentally friendly, and a variety of microorganisms have been developed as microbial cell factories (MCFs) to synthesize plant flavonoids owing to the feasibility of genetic manipulations. However, most of MCFs have not yet been commercialized and industrialized because of the challenges posed by unbalanced metabolic flux among various pathways and conflict between cell growth and production. Here, strategies for coping with the challenges are summarized in terms of enzymes, pathways, metabolic networks, host cells. And combined with protein structure prediction, de novo protein design, artificial intelligence (AI), biocatalytic retrosynthesis, and intelligent stress resistance, it provides new insights for the high efficient production of plant flavonoids and other plant natural products in MCFs.


Asunto(s)
Flavonoides , Ingeniería Metabólica , Inteligencia Artificial , Redes y Vías Metabólicas , Plantas/genética , Plantas/metabolismo
13.
Opt Express ; 30(4): 5439-5449, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209506

RESUMEN

Broadband and switchable versatile polarization metamaterial is crucial in the applications of imaging, sensing and communication, especially in the terahertz frequency. Here, we investigated versatile polarization manipulation in a hybrid terahertz metamaterial with bilayer rectangular rods and a complementary vanadium dioxide (VO2) layer. The VO2 phase transition enables a flexible switching from dual-band asymmetric transmission to dual-band reflective half-wave plate. The full width half maximum (FWHM) bandwidths of dual-band asymmetric transmission are 0.77 and 0.21 THz, respectively. The polarization conversion ratio (PCR) of the reflective metamaterial is over 0.9 in the frequency ranges of 1.01-1.17 THz and 1.47-1.95 THz. Angular dependences of multiple polarization properties are studied. The proposed switchable polarization metamaterial is important to the development of multifunctional polarization devices and multichannel polarization detection.

14.
Opt Lett ; 47(2): 441-444, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35030627

RESUMEN

Coding metasurfaces have received tremendous interest due to their unprecedented control of beams through the flexible design of coding sequences. However, realizing tunable coding metasurfaces with scattering-pattern shifts in the terahertz range is still challenging. Here, we propose a VO2-integrated coding metasurface to realize a thermally controlled scattering-pattern shift by convolution operation. The required phase profiles and high amplitudes of 1-bit and 2-bit coding metasurfaces are easily obtained only by changing the length of the VO2 cut-wires. The insulator-metal phase transition of the VO2 cut-wires leads to an ultrafast switching effect between multiple deflected scattering beams and one normally reflected beam. In particular, the VO2 phase transition contributes to dynamical convolution operations of the 2-bit coding metasurface. The proposed VO2-integrated coding metasurfaces are important for realizing tunable terahertz beam manipulation as well as arbitrary required scattering beams.

15.
PLoS Biol ; 17(10): e3000187, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31596842

RESUMEN

Multipotent trophoblasts undergo dynamic morphological movement and cellular differentiation after conceptus implantation to generate placenta. However, the mechanism controlling trophoblast development and differentiation during peri-implantation development in human remains elusive. In this study, we modeled human conceptus peri-implantation development from blastocyst to early postimplantation stages by using an in vitro coculture system and profiled the transcriptome of 476 individual trophoblast cells from these conceptuses. We revealed the genetic networks regulating peri-implantation trophoblast development. While determining when trophoblast differentiation happens, our bioinformatic analysis identified T-box transcription factor 3 (TBX3) as a key regulator for the differentiation of cytotrophoblast (CT) into syncytiotrophoblast (ST). The function of TBX3 in trophoblast differentiation is then validated by a loss-of-function experiment. In conclusion, our results provided a valuable resource to study the regulation of trophoblasts development and differentiation during human peri-implantation development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Modelos Biológicos , Proteínas de Dominio T Box/genética , Transcriptoma , Trofoblastos/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Biología Computacional/métodos , Implantación del Embrión/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de la Célula Individual , Proteínas de Dominio T Box/metabolismo , Trofoblastos/citología , Cigoto
16.
J Opt Soc Am A Opt Image Sci Vis ; 39(2): 227-232, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35200957

RESUMEN

Achieving extremely high sensitivity is an important indicator in the development of novel and stable gas concentration sensors. In this paper, we present a gas concentration sensor with parity-time symmetry for high sensitivity at low concentrations. The proposed sensor can detect toxic gases, such as benzene, bromine, and acetone, by probing the faint changing of the permittivity. Furthermore, the level of the sensitivity can be adjusted by the resistance segment, which is realized by various metallic formations. Our proposed structure provides a novel idea for the development of future gas concentration sensors, showing an exciting prospect for gas sensing technologies.

17.
Int J Clin Oncol ; 27(6): 1013-1024, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35482171

RESUMEN

BACKGROUND: Lung cancer is the leading cause of cancer-related deaths in the world. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer cases. For lack of conveniently sensitive and specific biomarkers, the majority of patients are in the late stage at initial diagnosis. Long non-coding RNAs (LncRNAs), a novel type of non-coding RNA, have recently been recognized as critical factors in tumor initiation and progression, but the role of exosomal LncRNAs has not been thoroughly excavated in NSCLC yet. METHODS: We isolated exosomes from the serum of patients with NSCLC and healthy controls. Exosome RNA deep sequencing was subsequently performed to detect differentially expressed exosomal LncRNAs. qRT-PCR assay was then utilized to validate dysregulated LncRNAs in both testing and multicentric validation cohort. Receiver operating characteristic (ROC) curve was used to detect the diagnostic capability of exosomal biomarkers. Furthermore, Kaplan-Meier analysis was applied to evaluate the prognostic values of these molecules. RESULTS: On the basis of analysis, we found that novel exosomal LncRNA RP5-977B1 exhibited higher levels in NSCLC than that in the healthy controls. The area under the curve (AUC) value of exosomal RP5-977B1 was 0.8899 and superior to conventional biomarkers CEA and CYFRA21-1 both in testing and multicentric validation cohort. Interestingly, the diagnostic capability of exosomal RP5-977B1 was also validated in early-stage patients with NSCLC. Furthermore, high expression of exosomal RP5-977B1was closely related with worse prognosis in NSCLC (P = 0.036). CONCLUSIONS: Our results suggested that exosomal RP5-977B1 might serve as a novel "liquid biopsy" diagnostic and prognostic biomarker to monitor NSCLC and improve possible therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , ARN Largo no Codificante , Antígenos de Neoplasias , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Queratina-19 , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pronóstico , ARN Largo no Codificante/genética
18.
World J Surg Oncol ; 20(1): 175, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655254

RESUMEN

PURPOSE: This study aimed at investigating miR-382-5p expression in tissues and cell lines with hepatocellular carcinoma (HCC), its effects on the invasion of HCC cells, and related mechanisms. METHODS: miR-382-5p expression in HCC tissues, adjacent tissues, cell lines of normal hepatic cells, and HCC cells were detected by qRT-PCR, indicating its upregulation or downregulation in HCC cell lines (Hep3B and HCCLM3). The effect of miR-382-5p on cell invasion was observed by the Transwell experiment. The targeting relationship of miR-382-5p and the phosphatase and tensin homolog (PTEN) was analyzed using bioinformatics tools and the luciferase reporter gene assay. The correlation between miR-382-5p and PTEN was analyzed with Spearman correlation analysis. PTEN expression was observed after upregulation and downregulation of miR-382-5p expression. The effect of miR-382-5p on the expression of key proteins in PI3K/Akt signaling pathway was determined by Western blot. RESULTS: miR-382-5p expression was upregulated in both HCC tissues and cell lines (both P<0.05). Upregulation or downregulation of miR-382-5p significantly promoted or inhibited the invasion of cell lines, Hep3B, and HCCLM3. The luciferase reporter gene assay confirmed that PTEN is a target of miR-382-5p. The expressions of miR-382-5p and PTEN were negatively correlated (r=-0.742, P<0.001). Upregulation of PTEN expression by plasmid transfection can reverse the invasive effect of miR-382-5p on HCC cells. Upregulation of miR-382-5p can activate PI3K/Akt signaling pathway, and downregulation of miR-382-5p can inhibit PI3K/Akt signaling pathway. CONCLUSIONS: miR-382-5p can activate the PI3K/Akt signaling pathway by targeting PTEN and promote HCC cell invasion.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Neoplasias Hepáticas/patología , Luciferasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
19.
Ecotoxicol Environ Saf ; 239: 113631, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35598445

RESUMEN

Cadmium (Cd) pollution poses a serious threat to agricultural production and paddy field fauna. Crystalline proteins (e.g., Cry1Ab and Cry1Ac) are secreted by Bacillus thuringiensis, which can manage pests via a complicated toxic mechanism and have been widely used for pest control due to the commercialization of transgenic crops (e.g., cotton and rice) that expresses Bt insecticidal proteins. Nonetheless, studies on the effects of combined stress of Cd and Cry1Ab protein on field indicator species are limited. In the present study, we showed that spiders, Pirata subpiraticus, fed with Cd-containing flies+Cry1Ab had dramatically higher Cd accumulation than that in the spiders fed with Cd-containing flies (p < 0.05). In addition, the enrichment of Cd led to the activation of the protective mechanism by elevating the concentrations of glutathione peroxidase, glutathione S-transferase, and metallothionein in the spiders (p < 0.05). An in-depth transcriptome analysis revealed that the activities of ion metal binding proteins, transporters, and channels might play essential roles in the Cd accumulation process. More importantly, the higher Cd concentration in the combined Cd+Cry1Ab exposure prolonged developmental duration of P. subpiraticus, due to the down-regulated cuticle proteins (CPs) encoding genes involved in the molting process, which was regulated by a series of putative transcriptional factors such as ZBTB and zf-C2H2. Collectively, this integrated analysis illustrates that the combined Cd+Cry1Ab exposure increases the adverse effects of Cd stress on the growth, antioxidase, and CPs encoding genes of P. subpiraticus, thus providing a research basis and prospect for the rationality of transgenic Cry1Ab crops in the cultivation of heavy metal contaminated soil.


Asunto(s)
Bacillus thuringiensis , Arañas , Animales , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Productos Agrícolas/metabolismo , Endotoxinas/análisis , Endotoxinas/genética , Endotoxinas/toxicidad , Proteínas Hemolisinas/análisis , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidad , Plantas Modificadas Genéticamente/metabolismo , Arañas/metabolismo , Transcriptoma
20.
Opt Express ; 29(11): 16769-16780, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34154232

RESUMEN

Gradient metasurfaces have attracted much attention due to intriguing wavefront and polarization manipulation. Here, a bilayer gradient metasurface is constructed by use of a rectangular nanorod layer and its complementary nanoaperture. It reveals asymmetric anomalous reflection and symmetric anomalous transmission for two counter-propagating directions. The dependence of the anomalous reflection and transmission phenomena on nanostructure thickness are numerically studied in optical frequencies. The increasing metallic layer thickness of the gradient metasurface greatly enhances anomalous reflection of the left-handed circularly polarized wave (LCP) for the nanorod side and suppresses anomalous reflection for the other side. Both resonant frequencies of anomalous reflection and transmission linearly shift with the refractive index. The bilayer gradient metasurface is important for realizing wavefront modulation and optical sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA