Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1450226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144231

RESUMEN

Indigenous microbial enhanced oil recovery (IMEOR) is a promising alternative way to promote oil recovery. It activates oil recovery microorganisms in the reservoir by adding nutrients to the injected water, utilizing microbial growth and metabolism to enhance recovery. However, few studies have focused on the impact of injected nutrients on reservoir microbial community composition and potential functions. This limits the further strategic development of IMEOR. In this study, we investigated the effects of nutrition on the composition of the reservoir bacterial community and functions in the Qizhong block of Xinjiang Oilfield, China, by constructing a long core microbial flooding simulation device. The results showed that the microbial community structure of the reservoir changed from aerobic state to anaerobic state after nutrient injection. Reducing the nutrient concentration increased the diversity and network stability of the reservoir bacterial community. At the same time, the nitrogen metabolism function also showed the same change response. Overall, these results indicated that nutrition significantly affected the community structure and function of reservoir microorganisms. Injecting low concentrations of nutrients may be more beneficial to improve oil recovery. This study is of great significance for guiding IMEOR technology and saving costs at the field site.

2.
Bioresour Technol ; 409: 131244, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127363

RESUMEN

Hydrocarbon-degrading consortia (HDC) play an important role in petroleum exploitation. However, the real composition and metabolic mechanism of HDC in the microbial enhanced oil recovery (MEOR) process remain unclear. By combining 13C-DNA stable isotope probing microcosms with metagenomics, some newly reported phyla, including Chloroflexi, Synergistetes, Thermotogae, and Planctomycetes, dominated the HDC in the oil reservoirs. In the field trials, the HDC in the aerobic-facultative-anaerobic stage of oilfields jointly promoted the MEOR process, with monthly oil increments of up to 189 tons. Pseudomonas can improve oil recovery by producing rhamnolipid in the facultative condition. Roseovarius was the novel taxa potentially oxidizing alkane and producing acetate to improve oil porosity and permeability in the aerobic condition. Ca. Bacteroidia were the new members potentially degrading hydrocarbons by fumarate addition in the anaerobic environment. Comprehensive identification of the active HDC in oil reservoirs provides a novel theoretical basis for oilfield regulatory scheme.


Asunto(s)
Biodegradación Ambiental , Hidrocarburos , Yacimiento de Petróleo y Gas , Hidrocarburos/metabolismo , Yacimiento de Petróleo y Gas/microbiología , Consorcios Microbianos/fisiología , Bacterias/metabolismo , Petróleo/metabolismo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA