Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 42(20): e2100372, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34491600

RESUMEN

Highly solvent swollen poly(N-isopropylacrylamide-co-acrylic acid) microgels are synthesized without exogenous crosslinker, making them extremely soft and deformable. These ultralow crosslinked microgels (ULC) are incubated under controlled osmotic pressure to provide a slow (and presumably thermodynamically controlled) approach to higher packing densities. It is found that ULC microgels show stable colloidal packing over a very wide range of osmotic pressures and thus packing densities. Surprising observation of co-existence between hexagonal and square lattices is also made over the lower range of studied osmotic pressures, with microgels apparently changing shape from spheres to cubes in defects or grain boundaries. It is proposed that the unusual packing behavior observed for ULC microgels is due to the extreme softness of these particles, where deswelling causes deformation and shrinking of the particles that result in unique packing states governed by contributions to the entropy at the colloidal system, single particle and ionic levels. These observations further suggest that more detailed experimental and theoretical studies of ultra-soft microgels are required to obtain a complete understanding of their behavior in packed and confined geometries.


Asunto(s)
Microgeles , Modelos Teóricos , Presión Osmótica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA