Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(24)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34946602

RESUMEN

The temporal dynamics of anthropogenic impacts on the Pchelina Reservoir is assessed based on chemical element analysis of three sediment cores at a depth of about 100-130 cm below the surface water. The 137Cs activity is measured to identify the layers corresponding to the 1986 Chernobyl accident. The obtained dating of sediment cores gives an average sedimentation rate of 0.44 cm/year in the Pchelina Reservoir. The elements' depth profiles (Ti, Mn, Fe, Zn, Cr, Ni, Cu, Mo, Sn, Sb, Pb, Co, Cd, Ce, Tl, Bi, Gd, La, Th and Unat) outline the Struma River as the main anthropogenic source for Pchelina Reservoir sediments. The principal component analysis reveals two groups of chemical elements connected with the anthropogenic impacts. The first group of chemical elements (Mn, Fe, Cr, Ni, Cu, Mo, Sn, Sb and Co) has increasing time trends in the Struma sediment core and no trend or decreasing ones at the Pchelina sampling core. The behavior of these elements is determined by the change of the profile of the industry in the Pernik town during the 1990s. The second group of elements (Zn, Pb, Cd, Bi and Unat) has increasing time trends in Struma and Pchelina sediment cores. The increased concentrations of these elements during the whole investigated period have led to moderate enrichments for Pb and Unat, and significant enrichments for Zn and Cd at the Pchelina sampling site. The moderately contaminated, according to the geoaccumulation indexes, Pchelina Reservoir surface sediment samples have low ecotoxicity.

2.
J Environ Monit ; 13(6): 1823-30, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21491038

RESUMEN

The introduction of catalytic converters has led to a new environmental problem since catalysts emit platinum group elements (PGEs) which are among the least distributed elements in nature. Along with PGEs the vehicle exhaust catalysts contain also a number of stabilizers, commonly oxides of rare earth elements and alkaline earth elements such as Ce, La and Zr. Since vehicular emission of these elements has received little attention so far this work attempts to offer insight into their distribution and fate in the environment by measuring their speciation in road dust samples collected along several highways in Germany and a city centre (Saarbrücken). Speciation of the elements (fractionation into associated mineralogical phases) was carried out via a conventional sequential extraction protocol and the complexing abilities of humic substances in the organic matter were investigated by selective extraction methods in combination with size segregation. For evaluation purposes soil samples spiked with catalytic converter material were analyzed, showing a much lower fraction of Ce, La and Zr mobilized in comparison to the road dust samples. It was found that the elements were effectively bound to humic substances in road dust with a preference for complexation with low molecular weight compounds (<1600 Da).


Asunto(s)
Contaminantes Atmosféricos/análisis , Cerio/análisis , Polvo/análisis , Lantano/análisis , Emisiones de Vehículos/análisis , Circonio/análisis , Contaminación del Aire/estadística & datos numéricos , Automóviles/estadística & datos numéricos , Monitoreo del Ambiente , Sustancias Húmicas/análisis , Suelo/química , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA