RESUMEN
The strongly electron-donating N-heterocyclic imines (NHIs) have been employed as excellent surface anchors for the thermodynamic stabilization of electron-deficient species due to their enhanced nucleophilicity. However, the binding mode and interfacial property of these new ligands are still unclear, representing a bottleneck for advanced applications in surface functionalization and catalysis. Here, NHIs with different side groups have been rationally designed, synthesized, and analyzed on various metal surfaces (Cu, Ag). Our results reveal different binding modes depending on the molecular structure and metal surface. The molecular design enables us to achieve a flat-lying or upright configuration and even a transition between these two binding modes depending on the coverage and time. Importantly, the two binding modes exhibit different degrees of interfacial charge transfer between the molecule and the surface. This study provides essential microscopic insight into the NHI adsorption geometry and interfacial charge transfer for the optimization of heterogeneous catalysts in coordination chemistry.
RESUMEN
The formation of surface relief gratings in thin azopolymeric films is investigated using atomistic molecular dynamics simulations and compared to experimental results for the specific case of poly-disperse-orange3-methyl-methacrylate. For this purpose, the film is illuminated with a light pattern of alternating bright and dark stripes in both cases. The simulations use a molecular mechanics switching potential to explicitly describe the photoisomerization dynamics between the E and Z isomers of the azo-units and take into account the orientation of the transition dipole moment with respect to the light polarization. Local heating and elevation of the illuminated regions with the subsequent movement of molecules into the neighboring dark regions are observed. This leads to the formation of valleys in the bright areas after re-cooling and is independent of the polarization direction. To verify these observations experimentally, the azopolymer film is illuminated with bright stripes of varying width using a spatial light modulator. Atomic force microscopy images confirm that the elevated areas correspond to the previously dark areas. In the experiment, the polarization of the incident light makes only a small difference since tiny grain-like structures form in the valleys only when the polarization is parallel to the stripes.
RESUMEN
Self-assembly of cyclohexyl cyclic (alkyl)(amino)carbenes (cyCAAC) can be realized and reversibly switched from a close-packed trimer phase to a chainlike dimer phase, enabled by the ring-flip of the cyclohexyl wingtip. Multiple methods including scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations identified a distinct isomer (axial or equatorial chair conformer) in each phase, and consequently support the conclusion regarding the determination of molecular surface geometry on the self-assembly of cyCAAC. Moreover, various substrates such as Ag (111) and Cu (111) are tested to elucidate the importance of cyCAAC-surface interactions on cyCAAC based nanopatterns. These investigations of patterned surfaces prompted a deep understanding of cyCAAC binding mode, surface geometry and reversible self-assembly, which are of paramount significance in the areas of catalysis, biosensor design and surface functionalization.
RESUMEN
Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe-tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal-oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip-sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu-tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen-terminated Cu-tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity.
Asunto(s)
Oxígeno , Microscopía de Fuerza AtómicaRESUMEN
The formation of azo compounds via redox cross-coupling of nitroarenes and arylamines, challenging in solution phase chemistry, is achieved by on-surface chemistry. Reaction products are analyzed with a cryogenic scanning tunneling microscope (STM) and X-ray photoelectron spectroscopy (XPS). By using well-designed precursors containing both an amino and a nitro functionality, azo polymers are prepared on surface via highly efficient nitro-amino cross-coupling. Experiments conducted on other substrates and surface orientations reveal that the metal surface has a significant effect on the reaction efficiency. The reaction was further found to proceed from partially oxidized/reduced precursors in dimerization reactions, shedding light on the mechanism that was studied by DFT calculations.
RESUMEN
The structural properties and binding motif of a strongly σ-electron-donating N-heterocyclic carbene have been investigated on different transition-metal surfaces. The examined cyclic (alkyl)(amino)carbene (CAAC) was found to be mobile on surfaces, and molecular islands with short-range order could be found at high coverage. A combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations highlights how CAACs bind to the surface, which is of tremendous importance to gain an understanding of heterogeneous catalysts bearing CAACs as ligands.
RESUMEN
Single chains of metal atoms are expected to be perfect one-dimensional nanowires in nanotechnology, due to their quantum nature including tunable electronic or spin coupling strengths. However, it is still rather difficult to fabricate such nanowires with metallic atoms under directional and separation control. Here, we succeeded in building higher-order single diamondoid-chains from the lower-order chains using a chemically well-controlled approach that employs diamondoids on metal surfaces. This approach results in higher-order diamondoid double chains by linking two neighboring single chains, and ultimately forms a central chain consisting of single Cu atoms suspended by the diamantane framework. The suspended Cu atoms are placed above the metal surface with a periodic distance of 0.67 ± 0.01 nm. Our bottom-up approach will allow detailed experimental investigations of the properties of these exciting suspended metal atoms (for example, quantized conductance, spin coupling, as well as transfer, etc.). Furthermore, we also identified different spatial configurations on the metal surfaces in on-surface reaction processes using high-resolution AFM imaging and density functional theory computations. Our findings broaden the on-surface synthesis concept from 2D planar aromatic molecules to 3D bulky aliphatic molecules.
RESUMEN
Four new MPtAl2 (M=Ca, Sr, Ba, Eu) compounds, adopting the orthorhombic MgCuAl2 -type structure, have been synthesized from the elements using tantalum ampoules. All compounds are obtained as platelet-shaped crystallites and exhibit an increasing moisture sensitivity with increasing size of the formal M cation. Structural investigations indicate a pronounced elongation of the crystallographic b-axis, which results in a significant distortion of the [PtAl2 ]δ- polyanion. Within the polyanion, layer-like arrangements can be found with bonding Pt-Al interactions within the slab; the increase of the b-axis can be attributed to increasing Al-Al distances and therefore decreasing interactions between the slabs, caused by the differently-sized formal M cations. While the alkaline earth (M=Ca, Sr) representatives exhibit Pauli paramagnetism, BaPtAl2 shows diamagnetic behavior, finally EuPtAl2 is ferromagnetic with TC =54.0(5)â K. The effective magnetic moment indicates that the Eu atoms are in a divalent oxidation state, which is confirmed by 151 Eu Mössbauer spectroscopic investigations. Measurements below the Curie-temperature show a full magnetic hyperfine field splitting with Bhf =21.7(1)â T. 27 Al and 195 Pt magic-angle spinning NMR spectroscopy corroborates the presence of single crystallographic sites for the Pt and Al atoms. The large 27 Al nuclear electric quadrupolar coupling constants confirm unusually strong electric field gradients, in agreement with the structural distortions and the respective theoretical calculations. X-ray photoelectron spectroscopy has been utilized to investigate the charge transfer within the polyanion. The Ptâ 4f binding energy decreases with decreasing electronegativity / ionization energy of the alkaline earth elements, suggesting an increasing electron density at the Pt atoms. Theoretical investigations underline the platinide character of the investigated compounds by Bader charge calculations. The analysis of the integrated crystal orbital Hamilton population (ICOHP) values, electron localization function (ELF) and isosurface analyses lead to a consistent structural picture, indicating stable layer-like arrangements of the [PtAl2 ]δ- polyanion.
RESUMEN
Nanostructured surfaces are ideal templates to control the self-assembly of molecular structures toward well-defined functional materials. To understand the initial adsorption process, we have investigated the arrangement and configuration of aromatic hydrocarbon molecules on nanostructured substrates composed of an alternating arrangement of Cu(110) and oxygen-reconstructed stripes. Scanning tunneling microscopy reveals a preferential adsorption of molecules at oxide phase boundaries. Noncontact atomic force microscopy experiments provide a detailed insight into the preferred adsorption site. By combining submolecular resolution imaging with density functional theory calculations, the interaction of the molecule with the phase boundary was elucidated excluding a classical hydrogen bonding. Instead, a complex balance of different interactions is revealed. Our results provide an atomistic picture for the driving forces of the adsorption process. This comprehensive understanding enables developing strategies for the bottom-up growth of functional molecular systems using nanotemplates.
RESUMEN
Tuning the binding mode of N-heterocyclic carbenes on metal surfaces is crucial for the development of new functional materials. To understand the impact of alkyl side groups on the formation of NHC species at the Au(111) surface, we combined scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory calculations. We reveal two significantly different binding modes depending on the alkyl chain length. In the case of a short alkyl substituent, an up-standing configuration with one Au adatom is preferred, whereas the longer alkyl groups result exclusively in NHC-Au-NHC complexes lying flat on the surface. Our study highlights how well-defined structural modifications of NHCs allow for controlling the local binding motif on surfaces, which is important to design designated catalytic sites at interfaces.
RESUMEN
Polymerization of a biphenyl bis α-diazo ketone on Cu(111) and Au(111) surfaces to provide furandiyl bridged poly-para-phenylenes is reported. Polymerization on Cu(111) occurs via initial N2 fragmentation leading to Cu-biscarbene complexes at room temperature as polymeric organometallic structure. At 135 °C, carbene coupling affords polymeric α,ß-unsaturated 1,4-diketones, while analogous alkene formation on the Au(111) surface occurs at room temperature. Further temperature increase leads to deoxygenative cyclization of the 1,4-diketone moieties to provide alternating furandiyl biphenyl copolymers on Cu(111) (165 °C) and Au(111) (240 °C) surfaces. This work shows a new approach to generate Cu-biscarbene intermediates on surfaces, opening the pathway for the controlled generation of biphenyl copolymers.
RESUMEN
Intermolecular C-C coupling after cleavage of C-X (mostly, X = Br or I) bonds has been extensively studied for facilitating the synthesis of polymeric nanostructures. However, the accidental appearance of C-H coupling at the terminal carbon atoms would limit the successive extension of covalent polymers. To our knowledge, the selective C-H coupling after dehalogenation has not so far been reported, which may illuminate another interesting field of chemical synthesis on surfaces besides in situ fabrication of polymers, i.e., synthesis of novel organic molecules. By combining STM imaging, XPS analysis, and DFT calculations, we have achieved predominant C-C coupling on Au(111) and more interestingly selective C-H coupling on Ag(111), which in turn leads to selective synthesis of polymeric chains or new organic molecules.
RESUMEN
Silylation and desilylation are important functional group manipulations in solution-phase organic chemistry that are heavily used to protect/deprotect different functionalities. Herein, we disclose the first examples of the σ-bond metathesis of silylated alkynes with aromatic carboxylic acids on the Ag(111) and Au(111) surfaces to give the corresponding terminal alkynes and silyl esters, which is supported by density functional theory calculations and further confirmed by X-ray photoelectron spectroscopy analysis. Such a protecting group strategy applied to on-surface chemistry allows self-assembly structures to be generated from molecules that are inherently unstable in solution and in the solid state. This is shown by the successful formation of self-assembled hexaethynylbenzene at Ag(111). Furthermore, it is also shown that on the Au(111) surface this σ-bond metathesis can be combined with Glaser coupling to fabricate covalent polymers via a cascade process.
RESUMEN
With a combination of scanning tunneling microscopy and density functional theory, effects on molecular self-assembly involving two distinct chemical groups were investigated. We analyzed the influence of the individual functional units in the adsorbate and extracted the dominating contributions to the adsorption behaviour. The viability of such a systematic approach to study self-assembled structures by considering the interplay between substrate effects and molecular design is demonstrated.
RESUMEN
Herein we report the on-surface oxidative homocoupling of 6,6'-(1,4-buta-1,3-diynyl)bis(2-naphthoic acid) (BDNA) via bisacylperoxide formation on different Au substrates. By using this unprecedented dehydrogenative polymerization of a biscarboxylic acid, linear poly-BDNA with a chain length of over 100â nm was prepared. It is shown that the monomer BDNA can be prepared inâ situ at the surface via on-surface Glaser coupling of 6-ethynyl-2-naphthoic acid (ENA). Under the Glaser coupling conditions, BDNA directly undergoes polymerization to give the polymeric peroxide (poly-BDNA) representing a first example of an on-surface domino reaction. It is shown that the reaction outcome varies as a function of surface topography (Au(111) or Au(100)) and also of the surface coverage, to give branched polymers, linear polymers, or 2D metal-organic networks.
RESUMEN
The surface-assisted synthesis of gold-organic hybrids on Au (111) and Au (100) surfaces is repotred by thermally initiated dehalogenation of chloro-substituted perylene-3,4,9,10-tetracarboxylic acid bisimides (PBIs). Structures and surface-directed alignment of the Au-PBI chains are investigated by scanning tunnelling microscopy in ultra high vacuum conditions. Using dichloro-PBI as a model system, the mechanism for the formation of Au-PBI dimer is revealed with scanning tunnelling microscopy studies and density functional theory calculations. A PBI radical generated from the homolytic C-Cl bond dissociation can covalently bind a surface gold atom and partially pull it out of the surface to form stable PBI-Au hybrid species, which also gives rise to the surface-directed alignment of the Au-PBI chains on reconstructed Au (100) surfaces.
RESUMEN
The structures of metal oxide surfaces and inherent defects are vital for a variety of applications in materials science and chemistry. While scanning probe microscopy can reveal atomic-scale details, elemental discrimination usually requires indirect assumptions and extensive theoretical modeling. Here, atomic force microscopy with O-terminated copper tips on a variety of sample systems demonstrates not only a clear and universal chemical contrast but also immediate access to the atomic configuration of defects. The chemically selective contrast is explained by purely electrostatic interactions between the negatively charged tip-apex and the strongly varying electrostatic potential of metal and oxygen sites. These results offer a standardized methodology for the direct characterization of even the most complex metal oxide surfaces, providing fundamental insight into atomic-scale processes in these material systems.
RESUMEN
We investigate the effect of low concentrations of iron on the physical properties of SnS van der Waals crystals grown from the melt. By means of scanning tunneling microscopy (STM) and photoemission spectroscopy we study Fe-induced defects and observe an electron doping effect in the band structure of the native p-type SnS semiconductor. Atomically resolved and bias dependent STM data of characteristic defects are compared to ab initio density functional theory simulations of vacancy (VS and VSn), Fe substitutional (FeSn), and Fe interstitial (Feint) defects. While native SnS is dominated by acceptor-like VSn vacancies, our results show that Fe preferentially occupies donor-like interstitial Feint sites in close proximity to VSn defects along the high-symmetry c-axis of SnS. The formation of such well-defined coupled (VSn, Feint) defect pairs leads to local compensation of the acceptor-like character of VSn, which is in line with a reduction of p-type carrier concentrations observed in our Hall transport measurements.
RESUMEN
N-Heterocyclic carbenes (NHCs) are established ligands for metal complexes and surfaces. Here we go beyond monomeric NHCs and report on the synthesis of NHC polymers on gold surfaces, consisting of ballbot-type repeating units bound to single Au adatoms. We designed, synthesized and deposited precursors containing different halogens on gold surfaces under ultrahigh vacuum. Conformational, electronic and charge transport properties were assessed by combining low-temperature scanning tunneling microscopy, non-contact atomic force microscopy, X-ray photoelectron spectroscopy, first-principles calculations and reactive force field simulations. The confirmed ballbot-type nature of the NHCs explains the high surface mobility of the incommensurate NHC polymers, which is prerequisite for their desired spatial alignment. The delicate balance between mobility and polymerization rate allows essential parameters for controlling polymer directionality to be derived. These polymers open up new opportunities in the fields of nanoelectronics, surface functionalization and catalysis.
RESUMEN
With regard to the development of single atom catalysts (SACs), non-noble metal-organic layers combine a large functional variability with cost efficiency. Here, we characterize reacted layers of melamine and melem molecules on a Cu(111) surface by noncontact atomic force microscopy (nc-AFM), X-ray photoelectron spectroscopy (XPS) and ab initio simulations. Upon deposition on the substrate and subsequent heat treatments in ultrahigh vacuum (UHV), these precursors undergo a stepwise dehydrogenation. After full dehydrogenation of the amino groups, the molecular units lie flat and are strongly chemisorbed on the copper substrate. We observe a particularly extreme interaction of the dehydrogenated nitrogen atoms with single copper atoms located at intermolecular sites. In agreement with the nc-AFM measurements performed with an O-terminated copper tip on these triazine- and heptazine-based copper nitride structures, our ab initio simulations confirm a pronounced interaction of oxygen species at these N-Cu-N sites. To investigate the related functional properties of our samples regarding the oxygen reduction reaction (ORR), we developed an electrochemical setup for cyclic voltammetry experiments performed at ambient pressure within a drop of electrolyte in a controlled O2 or N2 environment. Both copper nitride structures show a robust activity in irreversibly catalyzing the reduction of oxygen. The activity is assigned to the intermolecular N-Cu-N sites of the triazine- and heptazine-based copper nitrides or corresponding oxygenated versions (N-CuO-N, N-CuO2-N). By combining nc-AFM characterization on the atomic scale with a direct electrochemical proof of performance, our work provides fundamental insights about active sites in a technologically highly relevant reaction.