Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Photochem Photobiol Sci ; 18(6): 1398-1407, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-30924488

RESUMEN

In photopharmacology, photoswitchable compounds including azobenzene or other diarylazo moieties exhibit bioactivity against a target protein typically in the slender E-configuration, whereas the rather bulky Z-configuration usually is pharmacologically less potent. Herein we report the design, synthesis and photochemical/inhibitory characterization of new photoswitchable kinase inhibitors targeting p38α MAPK and CK1δ. A well characterized inhibitor scaffold was used to attach arylazo- and diazocine moieties. When the isolated isomers, or the photostationary state (PSS) of isomers, were tested in commonly used in vitro kinase assays, however, only small differences in activity were observed. X-ray analyses of ligand-bound p38α MAPK and CK1δ complexes revealed dynamic conformational adaptations of the protein with respect to both isomers. More importantly, irreversible reduction of the azo group to the corresponding hydrazine was observed. Independent experiments revealed that reducing agents such as DTT (dithiothreitol) and GSH (glutathione) that are typically used for protein stabilization in biological assays were responsible. Two further sources of error are the concentration dependence of the E-Z-switching efficiency and artefacts due to incomplete exclusion of light during testing. Our findings may also apply to a number of previously investigated azobenzene-based photoswitchable inhibitors.


Asunto(s)
Azocinas/farmacología , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Imidazoles/farmacología , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Tiazoles/farmacología , Azocinas/química , Quinasa Idelta de la Caseína/metabolismo , Relación Dosis-Respuesta a Droga , Imidazoles/química , Ligandos , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Tiazoles/química
2.
Angew Chem Int Ed Engl ; 58(52): 18823-18829, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31584233

RESUMEN

Isoforms of protein kinase Akt are involved in essential processes including cell proliferation, survival, and metabolism. However, their individual roles in health and disease have not been thoroughly evaluated. Thus, there is an urgent need for perturbation studies, preferably mediated by highly selective bioactive small molecules. Herein, we present a structure-guided approach for the design of structurally diverse and pharmacologically beneficial covalent-allosteric modifiers, which enabled an investigation of the isoform-specific preferences and the important residues within the allosteric site of the different isoforms. The biochemical, cellular, and structural evaluations revealed interactions responsible for the selective binding profiles. The isoform-selective covalent-allosteric Akt inhibitors that emerged from this approach showed a conclusive structure-activity relationship and broke ground in the development of selective probes to delineate the isoform-specific functions of Akt kinases.


Asunto(s)
Regulación Alostérica/fisiología , Sitio Alostérico/fisiología , Isoformas de Proteínas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Relación Estructura-Actividad
3.
Biochemistry ; 57(31): 4690-4699, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29791793

RESUMEN

Although the Ras protein has been seen as a potential target for cancer therapy for the past 30 years, there was a tendency to consider it undruggable until recently. This has changed with the demonstration that small molecules with a specificity for (disease related mutants of) Ras can indeed be found, and some of these molecules form covalent adducts. A subgroup of these molecules can be characterized as competing with binding of the natural ligands GTP and GDP. Because of the distinct properties of Ras and related GTPases, in particular the very high nucleotide affinities and associated very low dissociation rates, assays for characterizing such molecules are not trivial. This is compounded by the fact that Ras family GTPases tend to be thermally unstable in the absence of a bound nucleotide. Here, we show that instead of using the unstable nucleotide-free Ras, the protein can be isolated as a 1:1 complex with a modified nucleotide (GDP-ß-methyl ester) with low affinity to Ras. With this nucleotide analogue bound to the protein, testing of inhibitors is made experimentally more convenient and we present assays that allow the rapid assessment of the kinetic constants describing the inhibition process.


Asunto(s)
Bioensayo/métodos , Nucleótidos/análisis , Proteínas ras/antagonistas & inhibidores , Animales , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Cinética , Nucleótidos/farmacología , Espectrometría de Fluorescencia , Proteínas ras/metabolismo
4.
Angew Chem Int Ed Engl ; 56(49): 15737-15741, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28960788

RESUMEN

The characterization of low-affinity protein complexes is challenging due to their dynamic nature. Here, we present a method to stabilize transient protein complexes in vivo by generating a covalent and conformationally flexible bridge between the interaction partners. A highly active pyrrolysyl tRNA synthetase mutant directs the incorporation of unnatural amino acids bearing bromoalkyl moieties (BrCnK) into proteins. We demonstrate for the first time that low-affinity protein complexes between BrCnK-containing proteins and their binding partners can be stabilized in vivo in bacterial and mammalian cells. Using this approach, we determined the crystal structure of a transient GDP-bound complex between a small G-protein and its nucleotide exchange factor. We envision that this approach will prove valuable as a general tool for validating and characterizing protein-protein interactions in vitro and in vivo.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Reguladores de Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Reguladores de Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/química , Proteínas Fluorescentes Verdes/química , Células HEK293 , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Estabilidad Proteica
5.
EMBO J ; 31(7): 1774-84, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22307087

RESUMEN

The Legionella pneumophila protein AnkX that is injected into infected cells by a Type IV secretion system transfers a phosphocholine group from CDP-choline to a serine in the Rab1 and Rab35 GTPase Switch II regions. We show here that the consequences of phosphocholination on the interaction of Rab1/Rab35 with various partner proteins are quite distinct. Activation of phosphocholinated Rabs by GTP/GDP exchange factors (GEFs) and binding to the GDP dissociation inhibitor (GDI) are strongly inhibited, whereas deactivation by GTPase activating proteins (GAPs) and interactions with Rab-effector proteins (such as LidA and MICAL-3) are only slightly inhibited. We show that the Legionella protein lpg0696 has the ability to remove the phosphocholine group from Rab1. We present a model in which the action of AnkX occurs as an alternative to GTP/GDP exchange, stabilizing phosphocholinated Rabs in membranes in the GDP form because of loss of GDI binding ability, preventing interactions with cellular GTPase effectors, which require the GTP-bound form. Generation of the GTP form of phosphocholinated Rab proteins cannot occur due to loss of interaction with cellular GEFs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/metabolismo , Fosforilcolina/metabolismo , Proteínas de Unión al GTP rab/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo
6.
Traffic ; 13(12): 1565-88, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22901006

RESUMEN

Intracellular bacterial pathogens deploy virulence factors termed effectors to inhibit degradation by host cells and to establish intracellular niches where growth and differentiation take place. Here, we describe mechanisms by which human bacterial pathogens (including Chlamydiae; Coxiella burnetii; Helicobacter pylori; Legionella pneumophila; Listeria monocytogenes; Mycobacteria; Pseudomonas aeruginosa, Salmonella enterica) modulate endocytic and exocytic Rab GTPases in order to thrive in host cells. Host cell Rab GTPases are critical for intracellular transport following pathogen phagocytosis or endocytosis. At the molecular level bacterial effectors hijack Rab protein function to: evade degradation, direct transport to particular intracellular locations and monopolize host vesicles carrying molecules that are needed for a stable niche and/or bacterial growth and differentiation. Bacterial effectors may serve as specific receptors for Rab GTPases or as enzymes that post-translationally modify Rab proteins or endosomal membrane lipids required for Rab function. Emerging data indicate that bacterial effector expression is temporally and spatially regulated and multiple virulence factors may act concertedly to usurp Rab GTPase function, alter signaling and ensure niche establishment and intracellular bacterial growth, making this field an exciting area for further study.


Asunto(s)
Bacterias/patogenicidad , Interacciones Huésped-Patógeno , Proteínas de Unión al GTP rab/metabolismo , Animales , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Transporte de Proteínas , Factores de Virulencia/metabolismo
7.
Chembiochem ; 15(1): 19-26, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24174209

RESUMEN

Editing the translations: Adenylylation and phosphocholination have recently been found as important post-translational modifications used by pathogenic bacteria during the infection process. This review discusses the combined use of chemical handles and specific antibodies for the identification of previously unknown substrates of these post-translational modifications in infected host cells.


Asunto(s)
Adenosina/metabolismo , Fosforilcolina/metabolismo , Procesamiento Proteico-Postraduccional , Adenosina/química , Anticuerpos/inmunología , Bacterias/metabolismo , Enzimas/metabolismo , Péptidos/análisis , Péptidos/síntesis química , Fosforilcolina/química
8.
J Med Chem ; 67(8): 6044-6051, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38621359

RESUMEN

The GTPase KRAS acts as a switch in cellular signaling, transitioning between inactive GDP-bound and active GTP-bound states. In about 20% of human cancers, oncogenic RAS mutations disrupt this balance, favoring the active form and promoting proliferative signaling, thus rendering KRAS an appealing target for precision medicine in oncology. In 2013, Shokat and co-workers achieved a groundbreaking feat by covalently targeting a previously undiscovered allosteric pocket (switch II pocket (SWIIP)) of KRASG12C. This breakthrough led to the development and approval of sotorasib (AMG510) and adagrasib (MRTX849), revolutionizing the treatment of KRASG12C-dependent lung cancer. Recent achievements in targeting various KRASG12X mutants, using SWIIP as a key binding pocket, are discussed. Insights from successful KRASG12C targeting informed the design of molecules addressing other mutations, often in a covalent manner. These findings offer promise for innovative approaches in addressing commonly occurring KRAS mutations such as G12D, G12V, G12A, G12S, and G12R in various cancers.


Asunto(s)
Antineoplásicos , Piperazinas , Proteínas Proto-Oncogénicas p21(ras) , Piridinas , Pirimidinas , Humanos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Mutación , Neoplasias/tratamiento farmacológico , Animales
9.
J Biol Chem ; 287(42): 35036-35046, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22872634

RESUMEN

After the pathogenic bacterium Legionella pneumophila is phagocytosed, it injects more than 250 different proteins into the cytoplasm of host cells to evade lysosomal digestion and to replicate inside the host cell. Among these secreted proteins is the protein DrrA/SidM, which has been shown to modify Rab1b, a main regulator of vesicular trafficking in eukaryotic cells, by transfer of adenosine monophosphate (AMP) to Tyr(77). In addition, Legionella provides the protein SidD that hydrolytically reverses the covalent modification, suggesting a tight spatial and temporal control of Rab1 function by Legionella during infection. Small angle x-ray scattering experiments of DrrA allowed us to validate a tentative complex model built by combining available crystallographic data. We have established the effects of adenylylation on Rab1 interactions and properties in a quantitative way. In addition, we have characterized the kinetics of DrrA-catalyzed adenylylation as well as SidD-catalyzed deadenylylation toward Rab1 and have determined the nucleotide specificities of both enzymes. This study enhances our knowledge of proteins subverting Rab1 function at the Legionella-containing vacuole.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Legionella pneumophila/enzimología , Enfermedad de los Legionarios/enzimología , Procesamiento Proteico-Postraduccional , Proteínas de Unión al GTP rab1/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Legionella pneumophila/genética , Enfermedad de los Legionarios/genética , Proteínas de Unión al GTP rab1/química , Proteínas de Unión al GTP rab1/genética
10.
Elife ; 122023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36972177

RESUMEN

Mutations within Ras proteins represent major drivers in human cancer. In this study, we report the structure-based design, synthesis, as well as biochemical and cellular evaluation of nucleotide-based covalent inhibitors for KRasG13C, an important oncogenic mutant of Ras that has not been successfully addressed in the past. Mass spectrometry experiments and kinetic studies reveal promising molecular properties of these covalent inhibitors, and X-ray crystallographic analysis has yielded the first reported crystal structures of KRasG13C covalently locked with these GDP analogues. Importantly, KRasG13C covalently modified with these inhibitors can no longer undergo SOS-catalysed nucleotide exchange. As a final proof-of-concept, we show that in contrast to KRasG13C, the covalently locked protein is unable to induce oncogenic signalling in cells, further highlighting the possibility of using nucleotide-based inhibitors with covalent warheads in KRasG13C-driven cancer.


Asunto(s)
Neoplasias , Nucleótidos , Humanos , Cinética , Proteínas ras/genética , Transducción de Señal , Neoplasias/tratamiento farmacológico , Neoplasias/genética
11.
ACS Med Chem Lett ; 14(5): 591-598, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37197473

RESUMEN

Drug resistance mutations emerging during the treatment of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) inhibitors represent a major challenge in personalized cancer treatment and require constant development of new inhibitors. For the covalent irreversible EGFR inhibitor osimertinib, the predominant resistance mechanism is the acquired C797S mutation, which abolishes the covalent anchor point and thus results in a dramatic loss in potency. In this study, we present next-generation reversible EGFR inhibitors with the potential to overcome this EGFR-C797S resistance mutation. For this, we combined the reversible methylindole-aminopyrimidine scaffold known from osimertinib with the affinity driving isopropyl ester of mobocertinib. By occupying the hydrophobic back pocket, we were able to generate reversible inhibitors with subnanomolar activity against EGFR-L858R/C797S and EGFR-L858R/T790M/C797S with cellular activity on EGFR-L858R/C797S dependent Ba/F3 cells. Additionally, we were able to resolve cocrystal structures of these reversible aminopyrimidines, which will guide further inhibitor design toward C797S-mutated EGFR.

12.
J Med Chem ; 66(9): 6297-6314, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37130057

RESUMEN

Fragment-based drug discovery has played an important role in medicinal chemistry and pharmaceutical research. Despite numerous demonstrated successes, the limited diversity and overrepresentation of planar, sp2-rich structures in commercial libraries often hamper the full potential of this approach. Hence, the thorough design of screening libraries inevitably determines the probability for meaningful hits and subsequent structural elaboration. Against this background, we present the generation of an exclusive fragment library based on iterative entry nomination by a specifically designed computational workflow: "Fragtory". Following a pharmacophore diversity-driven approach, we used Fragtory in an interdisciplinary academic setting to guide both tailored synthesis efforts and the implementation of in-house compounds to build a curated 288-member library of sp3-enriched fragments. Subsequent NMR screens against a model protein and hit validation by protein crystallography led to the identification of structurally novel ligands that were further characterized by isothermal titration calorimetry, demonstrating the applicability of our experimental approach.


Asunto(s)
Descubrimiento de Drogas , Farmacóforo , Proteínas , Unión Proteica , Ligandos , Diseño de Fármacos
13.
ChemMedChem ; 17(10): e202100776, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35170857

RESUMEN

Akt is a protein kinase that has been implicated in the progression of cancerous tumours. A number of covalent allosteric Akt inhibitors are known, and based on these scaffolds, a small library of novel potential covalent allosteric imidazopyridine-based inhibitors was designed. The envisaged compounds were synthesised, with click chemistry enabling a modular approach to a number of the target compounds. The binding modes, potencies and antiproliferative activities of these synthesised compounds were explored, thereby furthering the structure activity relationship knowledge of this class of Akt inhibitors. Three novel covalent inhibitors were identified, exhibiting moderate activity against Akt1 and various cancer cell lines, potentially paving the way for future covalent allosteric inhibitors with improved properties.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-akt , Regulación Alostérica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Relación Estructura-Actividad
14.
PLoS One ; 17(6): e0267651, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35731722

RESUMEN

Misregulation and mutations of the transcription factor Nrf2 are involved in the development of a variety of human diseases. In this study, we employed the technology of stapled peptides to address a protein-DNA-complex and designed a set of Nrf2-based derivatives. Varying the length and position of the hydrocarbon staple, we chose the best peptide for further evaluation in both fixed and living cells. Peptide 4 revealed significant enrichment within the nucleus compared to its linear counterpart 5, indicating potent binding to DNA. Our studies suggest that these molecules offer an interesting strategy to target activated Nrf2 in cancer cells.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Péptidos , ADN , Humanos , Hidrocarburos/química , Factor 2 Relacionado con NF-E2/genética , Péptidos/química
15.
J Med Chem ; 65(15): 10341-10356, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35912476

RESUMEN

High-throughput nanomole-scale synthesis allows for late-stage functionalization (LSF) of compounds in an efficient and economical manner. Here, we demonstrated that copper-catalyzed azide-alkyne cycloaddition could be used for the LSF of covalent kinase inhibitors at the nanoscale, enabling the synthesis of hundreds of compounds that did not require purification for biological assay screening, thus reducing experimental time drastically. We generated crude libraries of inhibitors for the kinase MKK7, derived from two different parental precursors, and analyzed them via the high-throughput In-Cell Western assay. Select inhibitors were resynthesized, validated via conventional biological and biochemical methods such as western blots and liquid chromatography-mass spectrometry (LC-MS) labeling, and successfully co-crystallized. Two of these compounds showed over 20-fold increased inhibitory activity compared to the parental compound. This study demonstrates that high-throughput LSF of covalent inhibitors at the nanomole-scale level can be an auspicious approach in improving the properties of lead chemical matter.


Asunto(s)
Alquinos , Azidas , Alquinos/química , Azidas/química , Reacción de Cicloadición , Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masas/métodos
16.
J Med Chem ; 65(9): 6643-6655, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35486541

RESUMEN

Despite the clinical efficacy of epidermal growth factor receptor (EGFR) inhibitors, a subset of patients with non-small cell lung cancer displays insertion mutations in exon20 in EGFR and Her2 with limited treatment options. Here, we present the development and characterization of the novel covalent inhibitors LDC8201 and LDC0496 based on a 1H-pyrrolo[2,3-b]pyridine scaffold. They exhibited intense inhibitory potency toward EGFR and Her2 exon20 insertion mutations as well as selectivity over wild type EGFR and within the kinome. Complex crystal structures with the inhibitors and biochemical and cellular on-target activity document their favorable binding characteristics. Ultimately, we observed tumor shrinkage in mice engrafted with patient-derived EGFR-H773_V774insNPH mutant cells during treatment with LDC8201. Together, these results highlight the potential of covalent pyrrolopyridines as inhibitors to target exon20 insertion mutations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Mutagénesis Insercional , Mutación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
17.
Nat Commun ; 12(1): 5297, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489430

RESUMEN

The protein kinase Akt plays a pivotal role in cellular processes. However, its isoforms' distinct functions have not been resolved to date, mainly due to the lack of suitable biochemical and cellular tools. Against this background, we present the development of an isoform-dependent Ba/F3 model system to translate biochemical results on isoform specificity to the cellular level. Our cellular model system complemented by protein X-ray crystallography and structure-based ligand design results in covalent-allosteric Akt inhibitors with unique selectivity profiles. In a first proof-of-concept, the developed molecules allow studies on isoform-selective effects of Akt inhibition in cancer cells. Thus, this study will pave the way to resolve isoform-selective roles in health and disease and foster the development of next-generation therapeutics with superior on-target properties.


Asunto(s)
Antineoplásicos/farmacología , Linfocitos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Alostérica , Sitio Alostérico , Animales , Antineoplásicos/síntesis química , Línea Celular , Diseño de Fármacos , Expresión Génica , Células HEK293 , Humanos , Concentración 50 Inhibidora , Linfocitos/citología , Linfocitos/enzimología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Bibliotecas de Moléculas Pequeñas/síntesis química , Spodoptera , Relación Estructura-Actividad
18.
RSC Med Chem ; 11(7): 760-770, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479673

RESUMEN

KRas is the most frequently mutated oncogene in human cancer, and even 40 years after the initial discovery of Ras oncogenes in 1982, no approved drug directly targets Ras in Ras-driven cancer. New information and approaches for direct targeting of mutant Ras have fueled hope for the development of direct KRas inhibitors. In this review, we provide a comprehensive historical perspective of the development of promising KRasG12C inhibitors that covalently bind to the mutated cysteine residue in the switch-II pocket and trap the protein in the inactive GDP bound state. After decades of failure, three covalent G12C-specific inhibitors from three independent companies have recently entered clinical trials and therefore represent new hope for patients suffering from KRasG12C driven cancer.

19.
ACS Med Chem Lett ; 11(12): 2484-2490, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33335671

RESUMEN

Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) and currently the gold-standard for the treatment of patients suffering from non-small cell lung cancer (NSCLC) harboring T790M-mutated epidermal growth factor receptor (EGFR). The outcome of the treatment, however, is limited by the emergence of the C797S resistance mutation. Allosteric inhibitors have a different mode of action and were developed to overcome this limitation. However, most of these innovative molecules are not effective as a single agent. Recently, mutated EGFR was successfully addressed with osimertinib combined with the allosteric inhibitor JBJ-04-125-02, but surprisingly, structural insights into their binding mode were lacking. Here, we present the first complex crystal structures of mutant EGFR in complex with third-generation inhibitors such as osimertinib and mavelertinib in the presence of simultaneously bound allosteric inhibitors. These structures highlight the possibility of further combinations targeting EGFR and lay the foundation for hybrid inhibitors as next-generation TKIs.

20.
J Med Chem ; 63(20): 11725-11755, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32931277

RESUMEN

Mutated or amplified Her2 serves as a driver of non-small cell lung cancer or mediates resistance toward the inhibition of its family member epidermal growth factor receptor with small-molecule inhibitors. To date, small-molecule inhibitors targeting Her2 which can be used in clinical routine are lacking, and therefore, the development of novel inhibitors was undertaken. In this study, the well-established pyrrolopyrimidine scaffold was modified with structural motifs identified from a screening campaign with more than 1600 compounds, which were applied against wild-type Her2 and its mutant variant Her2-A775_G776insYVMA. The resulting inhibitors were designed to covalently target a reactive cysteine in the binding site of Her2 and were further optimized by means of structure-based drug design utilizing a set of obtained complex crystal structures. In addition, the analysis of binding kinetics and absorption, distribution, metabolism, and excretion parameters as well as mass spectrometry experiments and western blot analysis substantiated our approach.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Cinética , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Pirroles/síntesis química , Pirroles/química , Receptor ErbB-2/genética , Receptor ErbB-2/aislamiento & purificación , Relación Estructura-Actividad , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA