Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Org Biomol Chem ; 18(18): 3585-3598, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32347287

RESUMEN

Six single-chain, 1,32-alkyl-branched bis(phosphocholines) PC-C32(1,32Cm)-PC have been synthesized as model lipids for naturally occurring archaeal membrane lipids. The preparation of these bipolar amphiphiles bearing lateral alkyl chains of different lengths (C4-C15) was realized using a Cu-catalyzed Grignard bis-coupling reaction of various primary alkyl-branched bromides as side parts and a 1,22-dibromide as the centre part. The aggregation behaviour of these bolalipids in water was initially investigated by differential scanning calorimetry and transmission electron microscopy. As a main result, the types of aggregates found and their stability upon heating were strongly connected to the length of the lateral alkyl chain of the bolalipid: short and long lateral chains led to lamellar structures, whereas side chains of medium length led to fibrous aggregates. In future, these bolalipids could be used to produce tailored and stabilized liposomes for oral drug delivery.

2.
Langmuir ; 35(38): 12439-12450, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31456406

RESUMEN

In this study, we describe the miscibility of four azide-modified membrane phospholipids (azidolipids) with conventional phospholipids. The azidolipids bear an azide group at different positions of the sn-1 or sn-2 alkyl chain and they further differ in the type of linkage (ester vs ether) of the sn-2 alkyl chain. Investigations regarding the miscibility of the azidolipids with bilayer-forming phosphatidylcholines will evaluate lipid mixtures that are suitable for the production of stable azidolipid-doped liposomes. These vesicles then serve as model membranes for the incorporation of model peptides or proteins in the future. The miscibility of both types of phospholipids was studied by calorimetric assays, electron microscopy, small-angle X-ray scattering, infrared spectroscopy, and dynamic light scattering to provide a complete biophysical characterization of the mixed systems.


Asunto(s)
Azidas/química , Fosfatidilcolinas/química , Modelos Moleculares , Conformación Molecular
3.
Langmuir ; 34(14): 4360-4373, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29557659

RESUMEN

In the present work, we describe the synthesis and the temperature-dependent aggregation behavior of a new class of asymmetrical glycerol diether bolalipids. These bolalipids are composed of a membrane-spanning alkyl chain with 32 carbon atoms (C32) in the sn-3 position, a methyl-branched C16 alkyl chain in the sn-2 position, and a zwitterionic phosphocholine headgroup in the sn-1 position of a glycerol moiety. The long C32 alkyl chain is terminated either by a second phosphocholine (PC-Gly(2C16Me)C32-PC) or by a phosphodimethylethanolamine headgroup (PC-Gly(2C16Me)C32-Me2PE). The temperature- and pH-dependent aggregation behavior of both lipids was studied using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments. The morphology of the formed aggregates in an aqueous suspension was visualized by transmission electron microscopy (TEM). We show that PC-Gly(2C16Me)C32-PC and PC-Gly(2C16Me)C32-Me2PE at pH 5 self-assemble into large lamellar aggregates and large lipid vesicles. Within these structures, the bolalipid molecules are probably assembled in a monolayer with fully interdigitated chains. The lipid molecules seem to be tilted with respect to the layer normal to ensure a dense packing of the alkyl chains. A temperature increase leads to a transition from a lamellar gel phase to the liquid-crystalline phase at about 28-30 °C for both bolalipids. The lamellar aggregates of PC-Gly(2C16Me)C32-Me2PE started to transform into nanofibers when the pH value of the suspension was increased to above 11. At pH 12, these nanofibers were the dominant aggregates.

4.
Colloids Surf B Biointerfaces ; 212: 112369, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35123195

RESUMEN

Synthetic single-chain bolalipids with symmetrical headgroups have shown potential in various pharmaceutical applications, such as the stabilization of liposome bilayers. Despite their amphiphilic character, synthetic bolalipids have not yet been investigated for their suitability as solubilizing agents for poorly soluble drug compounds. In this study, three synthetic single-chain bolalipids with increasing alkyl chain lengths (C22, C24 and C26) were investigated. All three bolalipids were able to achieve an increased solubility of the model drug, mefenamic acid, by approximately 180% in a pH 7.4 buffer compared to only a 102-105% increase achieved by sodium dodecyl sulfate (SDS) or the non-ionic surfactant pegylated hydroxystearate (PEG-HS). Subsequently, interfacial activity of bolalipids and their ability to destabilize liposomal bilayers were investigated. The C22 bolalipid exhibited a consistently lower interfacial activity, which was consistent with its significantly lower cytotoxicity in the macrophage-like cell line, J774. A1, compared to C24 and C26 counterparts. The mean IC50 values of the bolalipids tested (0.035-0.093 mM) were approximately 4-100-fold lower than that of SDS (0.401 mM) or PEG-HS (0.922 mM), with the mechanism of toxicity linked to increased cell membrane permeability, as is expected for surfactants. In summary, evidence from this study shows that decreasing the length of the bolalipid alkyl linker from C26 to C22 resulted in a significantly decreased cytotoxicity with no loss in drug solubilization efficiency.


Asunto(s)
Liposomas , Tensoactivos , Excipientes , Liposomas/química , Micelas , Dodecil Sulfato de Sodio/química , Solubilidad , Tensoactivos/química
5.
Pharmaceutics ; 11(12)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816937

RESUMEN

The use of archaeal lipids and their artificial analogues, also known as bolalipids, represents a promising approach for the stabilization of classical lipid vesicles for oral application. In a previous study, we investigated the mixing behavior of three single-chain alkyl-branched bolalipids PC-C32(1,32Cn)-PC (n = 3, 6, 9) with either saturated or unsaturated phosphatidyl-cholines. We proved, that the bolalipids PC-C32(1,32C6)-PC and PC-C32(1,32C9)-PC show miscibility with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). In the present work, we extended our vesicle system to natural lipid mixtures using phosphatidylcholine from soy beans, and we investigated the effect of incorporated bolalipids on the integrity of these mixed liposomes (bolasomes) in different gastrointestinal fluids using a dithionite assay and a calcein release assay in combination with particle size measurements. Finally, we also studied the retention of calcein within the bolasomes during freeze-drying. As a main result, we could show that in particular PC-C32(1,32C6)-PC is able to increase the stability of bolasomes in simulated gastric fluid-a prerequisite for the further use of liposomes as oral drug delivery vehicles.

6.
Biophys Chem ; 244: 1-10, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388712

RESUMEN

Liposomes are a promising class of drug delivery vehicles. However, no liposomal formulation has been approved for an oral application so far, due to stability issues of the liposomes in the gastrointestinal tract. Herein, we investigate the miscibility of three novel single-chain alkyl-branched bolalipids PC-C32(1,32Cn)-PC (n = 3, 6, 9) with either saturated or unsaturated phosphatidylcholines by means of differential scanning calorimetry (DSC), transmission electron microscopy (TEM) of stained samples, vitrified specimens, or replica of freeze-fractured samples, and dynamic light scattering (DLS). The novel bolalipids contain lateral alkyl chains of different length in 1- and 32-position of the long membrane-spanning C32 alkyl chain. We will show for the first time that these single-chain alkyl-branched bolalipids show a miscibility with bilayer-forming phospholipids-by maintaining the vesicular aggregate structure-due to the lateral alkyl substituents located next to the phosphocholine headgroup of the bolalipid. We are convinced that these alkyl side chains are able to fill the void volume, which is created when unmodified single-chain bolalipids are inserted in a transmembrane fashion into a phospholipid bilayer. Consequently, the miscibility of our alkyl-chained bolalipids with bilayer-forming phospholipids rose with increasing lengths of the lateral alkyl chain of the bolalipid. Finally, we were successful in preparing liposomes from various bolalipid/phospholipid mixtures, which were stable in size upon storage for at least 21 days. These mixed liposomes (bolasomes) could be used as oral drug delivery systems in the near future.


Asunto(s)
Membrana Dobles de Lípidos/química , Liposomas/química , Fosfatidilcolinas/química , Rastreo Diferencial de Calorimetría , Sistemas de Liberación de Medicamentos , Microscopía Electrónica de Transmisión , Estructura Molecular
7.
Biophys Chem ; 238: 39-48, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29742444

RESUMEN

Liposomes have received attention as a promising class of drug delivery vehicles. To date, many approaches have been tried developing liposomes for oral use. However, no liposomal formulation is on the market so far that is approved for oral application. In this study, we investigate the miscibility of two glycerol diether bolalipids with classical saturated and unsaturated phosphatidylcholines by means of differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Our bolalipids contain a long C32 alkyl chain bound to glycerol in the sn-3 position and a short C16 in the sn-2 position, which further carries a racemic methyl branch. The sn-1 position of the glycerol as well as the end of the long C32 alkyl chain contain polar headgroups: either two phosphocholine headgroups (PC-Gly(2C16Me)C32-PC) or a phosphocholine and a phosphodimethylethanolamine headgroup (PC-Gly(2C16Me)C32-Me2PE). We demonstrate that glycerol diether bolalipids show better miscibility with unsaturated phosphatidylcholines than with saturated ones. Both bolalipids in mixture with the unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) form liposomes, which are stable in size upon storage. These mixed bolalipid/phospholipid vesicles could be used as an oral liposomal formulation in the future.


Asunto(s)
Éteres de Glicerilo/química , Lípidos/química , Fosfatidilcolinas/química , Estructura Molecular
8.
Polymers (Basel) ; 9(11)2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-30965876

RESUMEN

Investigations regarding the self-assembly of (bola)phospholipids in aqueous media are crucial to understand the complex relationship between chemical structure of lipids and the shape and size of their aggregates in water. Here, we introduce a new asymmetrical glycerol diether bolaphospholipid, the compound Me2PE-Gly(2C16)C32-OH. This bolalipid contains a long (C32) ω-hydroxy alkyl chain bond to glycerol in the sn-3 position, a C16 alkyl chain at the sn-2 position, and a protonable phosphodimethylethanolamine (Me2PE) headgroup at the sn-1 position of the glycerol. The aggregation behavior of this bolalipid was studied as a function of temperature and pH using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. We show that this bolalipid aggregates into condensed lamellar sheets in acidic milieu and in large sheet-like aggregates at neutral pH-value. By contrast, at a pH-value of 10, where the Me2PE headgroup is only partially protonated, small lipid disks with diameter 50⁻100 nm were additionally found. Moreover, the miscibility of this asymmetrical bolalipid with the bilayer-forming phosphatidylcholine DPPC was investigated by means of DSC and TEM. The incorporation of bolalipids into phospholipid membranes could result in stabilized liposomes applicable for drug delivery purposes. We show that mixtures of DPPC and Me2PE-Gly(2C16)C32-OH form large lamellar aggregates at pH of 5, 7, and 10. However, closed lipid vesicles (liposomes) with an increased thermal stability were not found.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA