Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 241(4): 1621-1635, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38058250

RESUMEN

Due to the accelerating climate change, it is crucial to understand how plants adapt to rapid environmental changes. Such adaptation may be mediated by epigenetic mechanisms like DNA methylation, which could heritably alter phenotypes without changing the DNA sequence, especially across clonal generations. However, we are still missing robust evidence of the adaptive potential of DNA methylation in wild clonal populations. Here, we studied genetic, epigenetic and transcriptomic variation of Fragaria vesca, a predominantly clonally reproducing herb. We examined samples from 21 natural populations across three climatically distinct geographic regions, as well as clones of the same individuals grown in a common garden. We found that epigenetic variation was partly associated with climate of origin, particularly in non-CG contexts. Importantly, a large proportion of this variation was heritable across clonal generations. Additionally, a subset of these epigenetic changes affected the expression of genes mainly involved in plant growth and responses to pathogen and abiotic stress. These findings highlight the potential influence of epigenetic changes on phenotypic traits. Our findings indicate that variation in DNA methylation, which can be environmentally inducible and heritable, may enable clonal plant populations to adjust to their environmental conditions even in the absence of genetic adaptation.


Asunto(s)
Metilación de ADN , Fragaria , Humanos , Metilación de ADN/genética , Fragaria/genética , Epigénesis Genética , Fenotipo , Plantas/genética , Células Clonales
2.
J Evol Biol ; 37(6): 704-716, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38761114

RESUMEN

The potential for rapid evolution is an important mechanism allowing species to adapt to changing climatic conditions. Although such potential has been largely studied in various short-lived organisms, to what extent we can observe similar patterns in long-lived plant species, which often dominate natural systems, is largely unexplored. We explored the potential for rapid evolution in Festuca rubra, a long-lived grass with extensive clonal growth dominating in alpine grasslands. We used a field sowing experiment simulating expected climate change in our model region. Specifically, we exposed seeds from five independent seed sources to novel climatic conditions by shifting them along a natural climatic grid and explored the genetic profiles of established seedlings after 3 years. Data on genetic profiles of plants selected under different novel conditions indicate that different climate shifts select significantly different pools of genotypes from common seed pools. Increasing soil moisture was more important than increasing temperature or the interaction of the two climatic factors in selecting pressure. This can indicate negative genetic interaction in response to the combined effects or that the effects of different climates are interactive rather than additive. The selected alleles were found in genomic regions, likely affecting the function of specific genes or their expression. Many of these were also linked to morphological traits (mainly to trait plasticity), suggesting these changes may have a consequence on plant performance. Overall, these data indicate that even long-lived plant species may experience strong selection by climate, and their populations thus have the potential to rapidly adapt to these novel conditions.


Asunto(s)
Festuca , Festuca/genética , Cambio Climático , Adaptación Fisiológica/genética
3.
New Phytol ; 239(4): 1212-1224, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37421208

RESUMEN

Root traits including root exudates are key factors affecting plant interactions with soil and thus play an important role in determining ecosystem processes. The drivers of their variation, however, remain poorly understood. We determined the relative importance of phylogeny and species ecology in determining root traits and analyzed the extent to which root exudate composition can be predicted by other root traits. We measured different root morphological and biochemical traits (including exudate profiles) of 65 plant species grown in a controlled system. We tested phylogenetic conservatism in traits and disentangled the individual and overlapping effects of phylogeny and species ecology on traits. We also predicted root exudate composition using other root traits. Phylogenetic signal differed greatly among root traits, with the strongest signal in phenol content in plant tissues. Interspecific variation in root traits was partly explained by species ecology, but phylogeny was more important in most cases. Species exudate composition could be partly predicted by specific root length, root dry matter content, root biomass, and root diameter, but a large part of variation remained unexplained. In conclusion, root exudation cannot be easily predicted based on other root traits and more comparative data on root exudation are needed to understand their diversity.


Asunto(s)
Ecosistema , Raíces de Plantas , Filogenia , Ecología , Plantas , Exudados y Transudados , Suelo/química
4.
Mol Ecol ; 32(4): 756-771, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36478264

RESUMEN

Biological invasions in remote areas that experience low human activity provide unique opportunities to elucidate processes responsible for invasion success. Here we study the most widespread invasive plant species across the isolated islands of the Southern Ocean, the annual bluegrass, Poa annua. To analyse geographical variation in genome size, genetic diversity and reproductive strategies, we sampled all major sub-Antarctic archipelagos in this region and generated microsatellite data for 470 individual plants representing 31 populations. We also estimated genome sizes for a subset of individuals using flow cytometry. Occasional events of island colonization are expected to result in high genetic structure among islands, overall low genetic diversity and increased self-fertilization, but we show that this is not the case for P. annua. Microsatellite data indicated low population genetic structure and lack of isolation by distance among the sub-Antarctic archipelagos we sampled, but high population structure within each archipelago. We identified high levels of genetic diversity, low clonality and low selfing rates in sub-Antarctic P. annua populations (contrary to rates typical of continental populations). In turn, estimates of selfing declined in populations as genetic diversity increased. Additionally, we found that most P. annua individuals are probably tetraploid and that only slight variation exists in genome size across the Southern Ocean. Our findings suggest multiple independent introductions of P. annua into the sub-Antarctic, which promoted the establishment of genetically diverse populations. Despite multiple introductions, the adoption of convergent reproductive strategies (outcrossing) happened independently in each major archipelago. The combination of polyploidy and a mixed reproductive strategy probably benefited P. annua in the Southern Ocean by increasing genetic diversity and its ability to cope with the novel environmental conditions.


Asunto(s)
Variación Genética , Poliploidía , Humanos , Variación Genética/genética , Reproducción , Geografía , Especies Introducidas , Océanos y Mares , Repeticiones de Microsatélite/genética
5.
Oecologia ; 201(2): 461-477, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36745217

RESUMEN

The aim of this study was to compare plant-soil interactions in the native range of two congeneric European species differing in their invasive success in the world: a globally invasive Cirsium vulgare and non-invasive C. oleraceum. We assessed changes in soil nutrients and soil biota following soil conditioning by each species and compared performance of plants grown in self-conditioned and unconditioned soil, from which all, some or no biota was excluded. The invasive species depleted more nutrients than the non-invasive species and coped better with altered nutrient levels. The invasive species had higher seedling establishment which benefited from the presence of unconditioned biota transferred by soil filtrate. Biomass of both species increased in soil with self-conditioned soil filtrate and decreased in soil with self-conditioned whole-soil inoculum compared to unconditioned filtrate and inoculum. However, the increase was smaller and the decrease greater for the invasive species. The invasive species allocated less biomass to roots when associated with harmful biota, reducing negative effects of the biota on its performance. The results show that in the native range the invasive species is more limited by self-conditioned pathogens and benefits more from unconditioned mutualists and thus may benefit more from loss of effectively specialized soil biota in a secondary range. Our study highlights the utility of detailed plant-soil feedback research in species native range for understanding factors regulating species performance in their native range and pinpointing the types of biota involved in their regulation.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Suelo , Microbiología del Suelo , Raíces de Plantas , Especies Introducidas , Plantas
6.
Mol Ecol ; 31(6): 1649-1665, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34181792

RESUMEN

The link between the successful establishment of alien species and propagule pressure is well-documented. Less known is how humans influence the post-introduction dynamics of invasive alien populations. The latter requires studying parallel invasions by the same species in habitats that are differently impacted by humans. We analysed microsatellite and genome size variation, and then compared the genetic diversity and structure of invasive Poa annua L. on two sub-Antarctic islands: human-occupied Marion Island and unoccupied Prince Edward Island. We also carried out niche modelling to map the potential distribution of the species on both islands. We found high levels of genetic diversity and evidence for extensive admixture between genetically distinct lineages of P. annua on Marion Island. By contrast, the Prince Edward Island populations showed low genetic diversity, no apparent admixture, and had smaller genomes. On both islands, high genetic diversity was apparent at human landing sites, and on Marion Island, also around human settlements, suggesting that these areas received multiple introductions and/or acted as initial introduction sites and secondary sources (bridgeheads) for invasive populations. More than 70 years of continuous human activity associated with a meteorological station on Marion Island led to a distribution of this species around human settlements and along footpaths, which facilitates ongoing gene flow among geographically separated populations. By contrast, this was not the case for Prince Edward Island, where P. annua populations showed high genetic structure. The high levels of genetic variation and admixture in P. annua facilitated by human activity, coupled with high habitat suitability on both islands, suggest that P. annua is likely to increase its distribution and abundance in the future.


Asunto(s)
Flujo Génico , Repeticiones de Microsatélite , Regiones Antárticas , Ecosistema , Variación Genética/genética , Actividades Humanas , Humanos , Islas , Repeticiones de Microsatélite/genética
7.
Ann Bot ; 129(5): 529-540, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35180294

RESUMEN

BACKGROUND AND AIMS: Rhizomes are important organs allowing many clonal plants to persist and reproduce under stressful climates with longer rhizomes, indicating enhanced ability of the plants to spread vegetatively. We do not, however, know either how rhizome construction costs change with increasing length or how they vary with environmental conditions. METHODS: We analysed the rhizome length vs. mass scaling relationship, the plasticity in the scaling relationships, their genetic basis and how scaling relationships are linked to plant fitness. We used data from 275 genotypes of a clonal grass Festuca rubra originating from 11 localities and cultivated under four contrasting climates. Data were analysed using standard major axis regression, mixed-effect regression models and a structural equation model. KEY RESULTS: Rhizome construction costs increased (i.e. lower specific rhizome length) with increasing length. The trait scaling relationships were modulated by cultivation climate, and its effects also interacted with the climate of origin of the experimental plants. With increasing length, increasing moisture led to a greater increase in rhizome construction costs. Plants with lower rhizome construction costs showed significantly higher fitness. CONCLUSIONS: This study suggests that rhizome scaling relationships are plastic, but also show genetic differentiation and are linked to plant fitness. Therefore, to persist under variable environments, modulation in scaling relationships could be an important plant strategy.


Asunto(s)
Festuca , Rizoma , Biomasa , Clima , Poaceae
8.
Ann Bot ; 130(4): 535-546, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35709943

RESUMEN

BACKGROUND: Despite many studies on the importance of competition and plants' associations with mutualists and pathogens on plant performance and community organization, the joint effects of these two factors remain largely unexplored. Even less is known about how these joint effects vary through a plant's life in different environmental conditions and how they contribute to the long-term coexistence of species. METHODS: We investigated the role of plant-soil feedback (PSF) in intra- and interspecific competition, using two co-occurring dry grassland species as models. A two-phase PSF experiment was used. In the first phase, soil was conditioned by the two plant species. In the second, we assessed the effect of soil conditioning, competition and drought stress on seedling establishment, plant growth in the first and second vegetation season, and fruit production. We also estimated effects of different treatments on overall population growth rates and predicted the species' potential coexistence. RESULTS: Soil conditioning played a more important role in the early stages of the plants' life (seedling establishment and early growth) than competition. Specifically, we found strong negative intraspecific PSF for biomass production in the first year in both species. Although the effects of soil conditioning persisted in later stages of plant's life, competition and drought stress became more important. Surprisingly, models predicting species coexistence contrasted with the effects on individual life stages, showing that our model species benefit from their self-conditioned soil in the long run. CONCLUSIONS: We provide evidence that the effects of PSF vary through plants' life stages. Our study suggests that we cannot easily predict the effects of soil conditioning on long-term coexistence of species using data only on performance at a single time as commonly done in PSF studies. We also show the importance of using as realistic environmental conditions as possible (such as drought stress experienced in dry grasslands) to draw reasonable conclusions on species coexistence.


Asunto(s)
Plantas , Suelo , Retroalimentación , Desarrollo de la Planta , Plantones , Microbiología del Suelo
9.
Physiol Plant ; 174(1): e13608, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34837234

RESUMEN

Knowledge of the ability of plants to respond to climate change via phenotypic plasticity or genetic adaptation in ecophysiological traits and of the link of these traits to fitness is still limited. We studied the clonal grass Festuca rubra from 11 localities representing factorially crossed gradients of temperature and precipitation and cultivated them in growth chambers simulating temperature and moisture regime in the four extreme localities. We measured net photosynthetic rate, Fv /Fm , specific leaf area, osmotic potential and stomatal density and length and tested their relationship to proxies of fitness. We found strong phenotypic plasticity in photosynthetic traits and genetic differentiation in stomatal traits. The effects of temperature and moisture interacted (either as conditions of origin or growth chambers), as were effects of growth and origin. The relationships between the ecophysiological and fitness-related traits were significant but weak. Phenotypic plasticity and genetic differentiation of the species indicate the potential ability of F. rubra to adapt to novel climatic conditions. The most important challenge for the plants seems to be increasing moisture exposing plants to hypoxia. However, the plants have the potential to respond to increased moisture by changes in stomatal size and density and adjustments of osmotic potential. Changes in ecophysiological traits translate into variation in plant fitness, but the selection on the traits is relatively weak and depends on actual conditions. Despite the selection, the plants do not show strong local adaptation and local adaptation is thus likely not restricting species ability to adjust to novel conditions.


Asunto(s)
Festuca , Adaptación Fisiológica , Cambio Climático , Festuca/genética , Fenotipo , Hojas de la Planta/fisiología
10.
Ecol Lett ; 24(11): 2378-2393, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34355467

RESUMEN

Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.


Asunto(s)
Máscaras , Plantago , Adaptación Fisiológica , Biomasa , Fenotipo
11.
Am J Bot ; 108(5): 798-810, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33988866

RESUMEN

PREMISE: Despite the existence of many studies on the responses of plant species to climate change, there is a knowledge gap on how specific climatic factors and their interactions regulate seed germination in alpine species. This understanding is complicated by the interplay between responses of seeds to the environment experienced during germination, the environment experienced by the maternal plant during seed development and genetic adaptations of the maternal plant to its environment of origin. METHODS: The study species (Anthoxanthum alpinum, A. odoratum) originated from localities with factorial combinations of temperature and precipitation. Seed germination was tested in conditions simulating the extreme ends of the current field conditions and a climate change scenario. We compared the performance of field-collected seeds with that of garden-collected seeds. RESULTS: A change to warmer and wetter conditions resulted in the highest germination of A. alpinum, while A. odoratum germinated the most in colder temperature and with home moisture. The maternal environment did have an impact on plant performance of the study species. Field-collected seeds of A. alpinum tolerated warmer conditions better than those from the experimental garden. CONCLUSIONS: The results demonstrate how knowledge of responses to climate change can increase our ability to understand and predict the fate of alpine species. Studies that aim to understand the germination requirements of seeds under future climates should use experimental designs allowing the separation of genetic differentiation, plasticity and maternal effects and their interactions, since all these mechanisms play an important role in driving species' germination patterns.


Asunto(s)
Germinación , Latencia en las Plantas , Herencia Materna , Poaceae , Semillas , Temperatura
12.
Photosynth Res ; 140(3): 289-299, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30413987

RESUMEN

The contents of photosynthetic pigments are an important indicator of many processes taking place in the plant body. Still, however, our knowledge of the effects of polyploidization, a major driver of speciation in vascular plants, on the contents of photosynthetic pigments is very sparse. We compared the contents of photosynthetic pigments among natural diploids, natural tetraploids, and synthetic tetraploids. The material originated from four natural mixed-cytotype populations of diploid and autotetraploid Vicia cracca (Fabaceae) occurring in the contact zone between the cytotypes in Central Europe and was cultivated under uniform conditions. We explored whether the contents of pigments are primarily driven by polyploidization or by subsequent evolution of the polyploid lineage and whether the patterns differ between populations. We also explored the relationship between pigment contents and plant performance. We found very few significant effects of the cytotype on the individual pigments but many significant interactions between the cytotype and the population. In pair-wise comparisons, many comparisons were not significant. The prevailing pattern among the significant once was that the contents of pigments were determined by polyploidization rather than by subsequent evolution of the polyploid lineage. The contents of the pigments turned out to be a useful predictor of plant performance not only at the time of material collection, but also at the end of the growing season. Further studies exploring differences in the contents of photosynthetic pigments in different cytotypes using replicated populations and assessing their relationship to plant performance are needed to assess the generality of our findings.


Asunto(s)
Fotosíntesis/genética , Pigmentos Biológicos/genética , Vicia/genética , Diploidia , Pigmentos Biológicos/metabolismo , Poliploidía , Tetraploidía , Vicia/fisiología
13.
J Evol Biol ; 32(10): 1057-1068, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31287927

RESUMEN

Adaptive responses are probably the most effective long-term responses of populations to climate change, but they require sufficient evolutionary potential upon which selection can act. This requires high genetic variance for the traits under selection and low antagonizing genetic covariances between the different traits. Evolutionary potential estimates are still scarce for long-lived, clonal plants, although these species are predicted to dominate the landscape with climate change. We studied the evolutionary potential of a perennial grass, Festuca rubra, in western Norway, in two controlled environments corresponding to extreme environments in natural populations: cold-dry and warm-wet, the latter being consistent with the climatic predictions for the country. We estimated genetic variances, covariances, selection gradients and response to selection for a wide range of growth, resource acquisition and physiological traits, and compared their estimates between the environments. We showed that the evolutionary potential of F. rubra is high in both environments, and genetic covariances define one main direction along which selection can act with relatively few constraints to selection. The observed response to selection at present is not sufficient to produce genotypes adapted to the predicted climate change under a simple, space for time substitution model. However, the current populations contain genotypes which are pre-adapted to the new climate, especially for growth and resource acquisition traits. Overall, these results suggest that the present populations of the long-lived clonal plant may have sufficient evolutionary potential to withstand long-term climate changes through adaptive responses.


Asunto(s)
Evolución Biológica , Cambio Climático , Festuca/genética , Festuca/fisiología , Ecosistema , Noruega , Selección Genética
14.
Oecologia ; 190(2): 411-423, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31154510

RESUMEN

The family of orchids involves a number of critically endangered species. Understanding of drivers of their landscape distribution could provide a valuable insight into their decline. Our objectives were to develop models predicting distribution of selected orchid species-four co-occurring forest orchid species, Cephalanthera rubra, Epipactis atrorubens, E. helleborine, and Neottia nidus-avis-at a landscape scale using a wide range of habitat characteristics. Subsequently, we compared the model predictions with species occurrence and the results of the field germination experiment while considering two germination stages-asymbiotic (early stage) and symbiotic. And finally, we attempted to identify possible drivers of species' landscape distribution (i.e., dispersal, availability of habitat patches, or fungal associates). We have discovered that different habitat characteristics determined the distribution of different orchids. The species also differed in terms of availability of suitable habitat patches and patch occupancy (the highest being E. atrorubens with 80%). Landscape distribution of the species was primarily restricted by the availability of fungal associates (the most important factor for C. rubra) and by the availability of suitable habitat patches (the most important in case of N. nidus-avis). Despite expected easy dispersal of spores, orchid distribution seems to be limited by the availability of fungal associates in the landscape. In contrast, the availability of orchid seeds does not seem to limit their distribution. These results can provide useful guidelines for conservation of the studied species.


Asunto(s)
Micorrizas , Orchidaceae , Animales , Ecosistema , Bosques , Germinación , Simbiosis
15.
Ann Bot ; 122(6): 1047-1059, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30107389

RESUMEN

Background and Aims: The origin of different cytotypes by autopolyploidy may be an important mechanism in plant diversification. Although cryptic autopolyploids probably comprise the largest fraction of overlooked plant diversity, our knowledge of their origin and evolution is still rather limited. Here we study the presumed autopolyploid aggregate of Aster amellus, which encompasses diploid and hexaploid cytotypes. Although the cytotypes of A. amellus are not morphologically distinguishable, previous studies showed spatial segregation and limited gene flow between them, which could result in different evolutionary trajectories for each cytotype. Methods: We combine macroevolutionary, microevolutionary and niche modelling tools to disentangle the origin and the demographic history of the cytotypes, using chloroplast and nuclear markers in a dense population sampling in central Europe. Key Results: Our results revealed a segregation between diploid and hexaploid cytotypes in the nuclear genome, where each cytotype represents a monophyletic lineage probably homogenized by concerted evolution. In contrast, the chloroplast genome showed intermixed connections between the cytotypes, which may correspond to shared ancestral relationships. Phylogeny, demographic analyses and ecological niche modelling supported an ongoing differentiation of the cytotypes, where the hexaploid cytotype is experiencing a demographic expansion and niche differentiation with respect to its diploid relative. Conclusions: The two cytotypes may be considered as two different lineages at the onset of their evolutionary diversification. Polyploidization led to the occurrence of hexaploids, which expanded and changed their ecological niche.


Asunto(s)
Aster/genética , Evolución Biológica , Filogenia , Poliploidía , ADN de Cloroplastos/análisis , ADN Espaciador Ribosómico/análisis , Europa (Continente) , Marcadores Genéticos , Modelos Biológicos , Filogeografía
16.
Oecologia ; 187(3): 679-688, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29696389

RESUMEN

Plant-soil feedback is one of the mechanisms affecting co-existence of species, ecological succession, and species invasiveness. However, in contrast to conspecific plant-soil feedback, general patterns in heterospecific feedback are mostly unknown. We used a meta-analysis to search for correlations between heterospecific feedback and species relatedness, functional traits, and field co-occurrence patterns. We searched published literature and compiled a data set of 618 PSF interactions. We gathered data on species traits reflecting plant size and growth rate (height, specific leaf area, and life span), co-occurrence in habitats and phylogenetic distance between species pairs. We found that species grew better in soil conditioned by (i) close relatives than in conspecific soil, whereas there was no relationship with phylogeny for distantly related species, (ii) species of greater plant height (but there was no relationship with species SLA or life span), and (iii) species more frequently co-occurring in the field. The results show that heterospecific plant-soil feedback can be explained by plant traits (height) and is reflected in co-occurrence patterns. Phylogeny was a significant predictor of feedbacks over short phylogenetic distance, suggesting fast evolution of traits related to feedback. The low variability explained by the models, however, indicates that other factors such as environmental conditions possibly alter plant-soil feedback responses.


Asunto(s)
Plantas , Suelo , Ecosistema , Filogenia , Microbiología del Suelo
17.
Oecologia ; 186(2): 459-470, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29214471

RESUMEN

Plant-soil feedback (PSF) is a fundamental mechanism explaining plant community composition. Two-phase experiments, i.e., conditioning and feedback, represent a common methodology to study PSF. The duration of the conditioning phase varies among studies and the PSF observed is often explained by its biotic component. Little is known about the temporal variation of PSF and its abiotic component. As early life stages are crucial for plant establishment, we grew Rorippa austriaca in soil conditioned over 2, 4, 6 or 8 weeks by a conspecific or a co-occurring species, Agrostis capillaris. For each conditioning duration, we analysed the soil chemical properties and the direction and intensity of intra- or inter-specific feedbacks. With increasing duration, the negative intra- and inter-specific feedbacks became stronger and weaker, respectively. The inter-specific feedback was more negative than the intra-specific feedback at 2 weeks and this reversed thereafter. The Mg content decreased with conditioning duration whatever the conditioning species was. With increasing duration, conditioning by R. austriaca strongly decreased pH, while A. capillaris did not affect pH. The K and P contents were not affected by the conditioning duration and were higher in R. austriaca soil than in A. capillaris soil. Our results suggest that not only conditioning species but also duration of conditioning phase may affect the magnitude of PSF. The changes in soil chemical properties linked to the conditioning species or the conditioning phase duration may drive the feedbacks by affecting plant growth directly or via the interacting microbial communities.


Asunto(s)
Plantas , Suelo , Retroalimentación , Desarrollo de la Planta , Microbiología del Suelo
18.
Oecologia ; 187(3): 863-872, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29700631

RESUMEN

Assessing genetic diversity within populations of rare species and understanding its determinants are crucial for effective species protection. While a lot is known about the relationships between genetic diversity, fitness, and current population size, very few studies explored the effects of past population size. Knowledge of past population size may, however, improve our ability to predict future population fates. We studied Gentianella praecox subsp. bohemica, a biennial species with extensive seed bank. We tested the effect of current, past minimal and maximal population size, and harmonic mean of population sizes within the last 15 years on genetic diversity and fitness. Maximum population size over the last 15 years was the best predictor of expected heterozygosity of the populations and was significantly related to current population size and management. Plant fitness was significantly related to current as well as maximum population size and expected heterozygosity. The results suggested that information on past population size may improve our understanding of contemporary genetic diversity across populations. They demonstrated that despite the strong fluctuations in population size, large reductions in population size do not result in immediate loss of genetic diversity and reduction of fitness within the populations. This is likely due to the seed bank of the species serving as reservoir of the genetic diversity of the populations. From a conservation point of view, this suggests that the restoration of small populations of short-lived species with permanent seed bank is possible as these populations may still be genetically diverse.


Asunto(s)
Especies en Peligro de Extinción , Genética de Población , Animales , Variación Genética , Densidad de Población
19.
Oecologia ; 186(3): 677-689, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29322323

RESUMEN

After abandonment of agricultural fields, some grassland plant species colonize these sites with a frequency equivalent to dry grasslands (generalists) while others are missing or underrepresented in abandoned fields (specialists). We aimed to understand the inability of specialists to spread on abandoned fields by exploring whether performance of generalists and specialists depended on soil abiotic and/or biotic legacy. We performed a greenhouse experiment with 12 species, six specialists and six generalists. The plants were grown in sterile soil from dry grassland or abandoned field inoculated with microbial communities from one or the other site. Plant growth, abundance of mycorrhizal structures and plant response to inoculation were evaluated. We focused on arbuscular mycorrhizal fungi (AMF), one of the most important parts of soil communities affecting plant performance. The abandoned field soil negatively affected plant growth, but positively affected plant response to inoculation. The AMF community from both sites differed in infectivity and taxa frequencies. The lower AMF taxa frequency in the dry grassland soil suggested a lack of functional complementarity. Despite the fact that dry grassland AMF produced more arbuscules, the dry grassland inoculum did not improve phosphorus nutrition of specialists contrary to the abandoned field inoculum. Inoculum origin did not affect phosphorus nutrition of generalists. The lower effectiveness of the dry grassland microbial community toward plant performance excludes its inoculation in the abandoned field soil as a solution to allow settlement of specialists. Still, the distinct response of specialists and generalists to inoculation suggested that they differ in AMF responsiveness.


Asunto(s)
Microbiota , Micorrizas , Hongos , Pradera , Desarrollo de la Planta , Raíces de Plantas , Suelo , Microbiología del Suelo
20.
BMC Evol Biol ; 17(1): 87, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28335715

RESUMEN

BACKGROUND: Processes driving ploidal diversity at the population level are virtually unknown. Their identification should use a combination of large-scale screening of ploidy levels in the field, pairwise crossing experiments and mathematical modelling linking these two types of data. We applied this approach to determine the drivers of frequencies of coexisting cytotypes in mixed-ploidy field populations of the fully sexual plant species Pilosella echioides. We examined fecundity and ploidal diversity in seeds from all possible pairwise crosses among 2x, 3x and 4x plants. Using these data, we simulated the dynamics of theoretical panmictic populations of individuals whose progeny structure is identical to that determined by the hybridization experiment. RESULTS: The seed set differed significantly between the crossing treatments, being highest in crosses between diploids and tetraploids and lowest in triploid-triploid crosses. The number of progeny classes (with respect to embryo and endosperm ploidy) ranged from three in the 2x-2x cross to eleven in the 3x-3x cross. Our simulations demonstrate that, provided there is no difference in clonal growth and/or survival between cytotypes, it is a clear case of minority cytotype exclusion depending on the initial conditions with two stable states, neither of which corresponds to the ploidal structure in the field: (i) with prevalent diploids and lower proportions of other ploidies, and (ii) with prevalent tetraploids and 9% of hexaploids. By contrast, if clonal growth differs between cytotypes, minority cytotype exclusion occurs only if the role of sexual reproduction is high; otherwise differences in clonal growth are sufficient to maintain triploid prevalence (as observed in the field) independently of initial conditions. CONCLUSIONS: The projections of our model suggest that the ploidal structure observed in the field can only be reached via a relatively high capacity for clonal growth (and proportionally lower sexual reproduction) in all cytotypes combined with higher clonal growth in the prevailing cytotype (3x).


Asunto(s)
Asteraceae/genética , Poliploidía , Simulación por Computador , Cruzamientos Genéticos , Diploidia , Fertilidad , Hibridación Genética , Reproducción , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA