Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(13): e23750, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38888878

RESUMEN

Kif16A, a member of the kinesin-3 family of motor proteins, has been shown to play crucial roles in inducing mitotic arrest, apoptosis, and mitotic cell death. However, its roles during oocyte meiotic maturation have not been fully defined. In this study, we report that Kif16A exhibits unique accumulation on the spindle apparatus and colocalizes with microtubule fibers during mouse oocyte meiotic maturation. Targeted depletion of Kif16A using gene-targeting siRNA disrupts the progression of the meiotic cell cycle. Furthermore, Kif16A depletion leads to aberrant spindle assembly and chromosome misalignment in oocytes. Our findings also indicate that Kif16A depletion reduces tubulin acetylation levels and compromises microtubule resistance to depolymerizing drugs, suggesting its crucial role in microtubule stability maintenance. Notably, we find that the depletion of Kif16A results in a notably elevated incidence of defective kinetochore-microtubule attachments and the absence of BubR1 localization at kinetochores, suggesting a critical role for Kif16A in the activation of the spindle assembly checkpoint (SAC) activity. Additionally, we observe that Kif16A is indispensable for proper actin filament distribution, thereby impacting spindle migration. In summary, our findings demonstrate that Kif16A plays a pivotal role in regulating microtubule and actin dynamics crucial for ensuring both spindle assembly and migration during mouse oocyte meiotic maturation.


Asunto(s)
Cinesinas , Meiosis , Microtúbulos , Oocitos , Huso Acromático , Animales , Cinesinas/metabolismo , Cinesinas/genética , Meiosis/fisiología , Oocitos/metabolismo , Microtúbulos/metabolismo , Ratones , Huso Acromático/metabolismo , Femenino , Actinas/metabolismo , Cinetocoros/metabolismo
2.
BMC Musculoskelet Disord ; 25(1): 70, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233913

RESUMEN

BACKGROUND: Researches have used intra-compartmental infusion and ballon tourniquest to create high intra-compartmental pressure in animal models of Acute Compartment Syndrome (ACS). However, due to the large differences in the modeling methods and the evaluation criteria of ACS, further researches of its pathophysiology and pathogenesis are hindered. Currently, there is no ideal animal model for ACS and this study aimed to establish a reproducible, clinically relevant animal model. METHODS: Blunt trauma and fracture were caused by the free falling of weights (0.5 kg, 1 kg, 2 kg) from a height of 40 cm onto the lower legs of rats, and the application of pressures of 100 mmHg, 200 mmHg, 300 mmHg and 400 mmHg to the lower limbs of rats using a modified pressurizing device for 6 h. The intra-compartmental pressure (ICP) and the pressure change (ΔP) of rats with single and combined injury were continuously recorded, and the pathophysiology of the rats was assessed based on serum biochemistry, histological and hemodynamic changes. RESULTS: The ΔP caused by single injury method of different weights falling onto the lower leg did not meet the diagnosis criteria for ACS (< 30 mmHg). On the other hand, a combined injury method of a falling weight of 1.0 kg and the use of a pressurizing device with pressure of 300 mmHg or 400 mmHg for 6 h resulted in the desired ACS diagnosis criteria with a ΔP value of less than 30 mmHg. The serum analytes, histological damage score, and fibrosis level of the combined injury group were significantly increased compared with control group, while the blood flow was significantly decreased compared with control group. CONCLUSION: We successfully established a new preclinical ACS-like rat model, by the compression of the lower leg of rats with 300 mmHg pressure for 6 h and blunt trauma by 1.0 kg weight falling.


Asunto(s)
Síndromes Compartimentales , Fracturas Óseas , Heridas no Penetrantes , Ratas , Animales , Síndromes Compartimentales/diagnóstico , Extremidad Inferior/lesiones , Presión , Fracturas Óseas/complicaciones , Heridas no Penetrantes/complicaciones
3.
Altern Ther Health Med ; 29(8): 297-301, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37632950

RESUMEN

Background: The optic nerve fiber layer, composed of ganglion cell axons within the ganglion cell layer, undergoes thickness changes due to diabetic retinopathy. However, the relationship between intraocular pressure (IOP) and optic fiber layer thickness remains unclear. Objective: To investigate the correlation between 24-hour intraocular pressure and optic nerve fiber layer thickness in patients with early diabetic retinopathy. Methods: This retrospective study collected 353 patients with early diabetic retinopathy from January 2019 to December 2021. They were categorized into the retinopathy group (n = 153) and the control group (n = 200). 24-hour IOP and optic fiber layer thickness were assessed, and the correlation between them was analyzed. Results: The observation group exhibited significantly higher 24-hour IOP compared to the control group (16.64 ± 2.58 vs. 15.63 ± 2.52 mmHg, P < .001). Notably, the thickness of upper, lower, nasal, temporal, and average optic nerve fiber layers in the observation group decreased significantly (P < .001). Pearson linear correlation revealed significant negative associations between 24-hour IOP and upper, nasal, temporal, and mean optic nerve fiber layer thickness (R2 = -0.277, -0.399, -0.344, and -0.489, P < .05). The upper, lower, nasal, temporal, and mean optic fiber thickness demonstrated diagnostic value for non-early diabetic retinopathy in type 2 diabetes patients (P < .05), with mean optic fiber thickness displaying the highest diagnostic potential (area under the curve: 0.843, 95% Confidence Interval: 0.803-0.884, P < .001). Conclusions: Thinning of the optic nerve fiber layer in early diabetic retinopathy patients holds predictive value for the condition and exhibits a negative correlation with 24-hour intraocular pressure.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Disco Óptico , Humanos , Retinopatía Diabética/diagnóstico , Disco Óptico/diagnóstico por imagen , Presión Intraocular , Células Ganglionares de la Retina/fisiología , Estudios Retrospectivos , Tomografía de Coherencia Óptica , Fibras Nerviosas
4.
Ecotoxicol Environ Saf ; 266: 115561, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37837697

RESUMEN

Butylparaben is an ubiquitous environmental endocrine disruptor, that is commonly used in cosmetics and personal care product due to its anti-microbial properties. Butylparaben has been shown to cause developmental toxicity, endocrine and metabolic disorders and immune diseases. However, little is known about the impact on female fertility, especially oocyte quality. In the present study, we reported that butylparaben influenced female fertility by showing the disturbed oocyte meiotic capacity and fertilization potential. Specifically, butylparaben results in the oocyte maturation arrest by impairing spindle/chromosome structure and microtubule stability. Besides, butylparaben results in fertilization failure by impairing the dynamics of Juno and ovastacin and the sperm binding ability. Last, single-cell transcriptome analysis showed that butylparaben-induced oocyte deterioration was caused by mitochondrial dysfunction, which led to the accumulation of ROS and occurrence of apoptosis. Collectively, our study indicates that mitochondrial dysfunction and redox perturbation is the major cause of the weakened female fertility expoesd to butylparaben.


Asunto(s)
Meiosis , Semen , Masculino , Femenino , Ratones , Animales , Oocitos/metabolismo , Fertilización , Fertilidad
5.
Sheng Li Xue Bao ; 75(4): 487-496, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37583035

RESUMEN

It is well established that increased excitability of the presympathetic neurons in the hypothalamic paraventricular nucleus (PVN) during hypertension leads to heightened sympathetic outflow and hypertension. However, the mechanism underlying the overactivation of PVN presympathetic neurons remains unclear. This study aimed to investigate the role of endogenous corticotropin-releasing factor (CRF) on the excitability of presympathetic neurons in PVN using Western blot, arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) recording, CRISPR/Cas9 technique and patch-clamp technique. The results showed that CRF protein expression in PVN was significantly upregulated in spontaneously hypertensive rats (SHRs) compared with normotensive Wistar-Kyoto (WKY) rats. Besides, PVN administration of exogenous CRF significantly increased RSNA, heart rate and ABP in WKY rats. In contrast, knockdown of upregulated CRF in PVN of SHRs inhibited CRF expression, led to membrane potential hyperpolarization, and decreased the frequency of current-evoked firings of PVN presympathetic neurons, which were reversed by incubation of exogenous CRF. Perfusion of rat brain slices with artificial cerebrospinal fluid containing CRF receptor 1 (CRFR1) blocker, NBI-35965, or CRF receptor 2 (CRFR2) blocker, Antisauvagine-30, showed that blocking CRFR1, but not CRFR2, hyperpolarized the membrane potential and inhibited the current-evoked firing of PVN presympathetic neurons in SHRs. However, blocking CRFR1 or CRFR2 did not affect the membrane potential and current-evoked firing of presympathetic neurons in WKY rats. Overall, these findings indicate that increased endogenous CRF release from PVN CRF neurons enhances the excitability of presympathetic neurons via activation of CRFR1 in SHRs.


Asunto(s)
Hipertensión , Núcleo Hipotalámico Paraventricular , Ratas , Animales , Ratas Endogámicas SHR , Núcleo Hipotalámico Paraventricular/fisiología , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Ratas Endogámicas WKY , Hormona Liberadora de Corticotropina/farmacología , Hormona Liberadora de Corticotropina/metabolismo , Neuronas/fisiología , Sistema Nervioso Simpático
6.
J Neurosci ; 38(28): 6388-6398, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29921713

RESUMEN

Both the sympathetic nervous system and the renin-angiotensin system are critically involved in hypertension development. Although angiotensin II (Ang II) stimulates hypothalamic paraventricular nucleus (PVN) neurons to increase sympathetic vasomotor tone, the molecular mechanism mediating this action remains unclear. The glutamate NMDAR in the PVN controls sympathetic outflow in hypertension. In this study, we determined the interaction between α2δ-1 (encoded by Cacna2d1), commonly known as a Ca2+ channel subunit, and NMDARs in the hypothalamus and its role in Ang II-induced synaptic NMDAR activity in PVN presympathetic neurons. Coimmunoprecipitation assays showed that α2δ-1 interacted with the NMDAR in the hypothalamus of male rats and humans (both sexes). Ang II increased the prevalence of synaptic α2δ-1-NMDAR complexes in the hypothalamus. Also, Ang II increased presynaptic and postsynaptic NMDAR activity via AT1 receptors, and such effects were abolished either by treatment with pregabalin, an inhibitory α2δ-1 ligand, or by interrupting the α2δ-1-NMDAR interaction with an α2δ-1 C terminus-interfering peptide. In Cacna2d1 knock-out mice (both sexes), Ang II failed to affect the presynaptic and postsynaptic NMDAR activity of PVN neurons. In addition, the α2δ-1 C terminus-interfering peptide blocked the sympathoexcitatory response to microinjection of Ang II into the PVN. Our findings indicate that Ang II augments sympathetic vasomotor tone and excitatory glutamatergic input to PVN presympathetic neurons by stimulating α2δ-1-bound NMDARs at synapses. This information extends our understanding of the molecular basis for the interaction between the sympathetic nervous and renin-angiotensin systems and suggests new strategies for treating neurogenic hypertension.SIGNIFICANCE STATEMENT Although both the sympathetic nervous system and renin-angiotensin system are closely involved in hypertension development, the molecular mechanisms mediating this involvement remain unclear. We showed that α2δ-1, previously known as a calcium channel subunit, interacts with NMDARs in the hypothalamus of rodents and humans. Angiotensin II (Ang II) increases the synaptic expression level of α2δ-1-NMDAR complexes. Furthermore, inhibiting α2δ-1, interrupting the α2δ-1-NMDAR interaction, or deleting α2δ-1 abolishes the potentiating effects of Ang II on presynaptic and postsynaptic NMDAR activity in the hypothalamus. In addition, the sympathoexcitatory response to Ang II depends on α2δ-1-bound NMDARs. Thus, α2δ-1-NMDAR complexes in the hypothalamus serve as an important molecular substrate for the interaction between the sympathetic nervous system and the renin-angiotensin system. This evidence suggests that α2δ-1 may be a useful target for the treatment neurogenic hypertension.


Asunto(s)
Angiotensina II/metabolismo , Canales de Calcio/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Renina-Angiotensina/fisiología , Sistema Nervioso Simpático/fisiología , Angiotensina II/farmacología , Animales , Femenino , Humanos , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
7.
J Physiol ; 597(16): 4325-4340, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31241170

RESUMEN

KEY POINTS: The angiotensin AT1 receptor expression and protein kinase C (PKC)-mediated NMDA receptor phosphorylation levels in the hypothalamus are increased in a rat genetic model of hypertension. Blocking AT1 receptors or PKC activity normalizes the increased pre- and postsynaptic NMDA receptor activity of hypothalamic presympathetic neurons in hypertensive animals. Inhibition of AT1 receptor-PKC activity in the hypothalamus reduces arterial blood pressure and sympathetic nerve discharges in hypertensive animals. AT1 receptors in the hypothalamus are endogenously activated to sustain NMDA receptor hyperactivity and elevated sympathetic outflow via PKC in hypertension. ABSTRACT: Increased synaptic N-methyl-d-aspartate receptor (NMDAR) activity in the hypothalamic paraventricular nucleus (PVN) plays a major role in elevated sympathetic output in hypertension. Although exogenous angiotensin II (AngII) can increase NMDAR activity in the PVN, whether endogenous AT1 receptor-protein kinase C (PKC) activity mediates the augmented NMDAR activity of PVN presympathetic neurons in hypertension is unclear. Here we show that blocking AT1 receptors with losartan or inhibiting PKC with chelerythrine significantly decreased the frequency of NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) and the amplitude of puff NMDA currents of retrogradely labelled spinally projecting PVN neurons in spontaneously hypertensive rats (SHRs). Also, treatment with chelerythrine abrogated the potentiating effect of AngII on mEPSCs and puff NMDA currents of labelled PVN neurons in SHRs. In contrast, neither losartan nor chelerythrine had any effect on mEPSCs or puff NMDA currents in labelled PVN neurons in Wistar-Kyoto (WKY) rats. Furthermore, levels of AT1 receptor mRNA and PKC-mediated NMDAR phosphorylation in the PVN were significantly higher in SHRs than in WKY rats. In addition, microinjection of losartan or chelerythrine into the PVN substantially reduced blood pressure and renal sympathetic nerve discharges in SHRs but not in WKY rats. Chelerythrine blocked sympathoexcitatory responses to AngII microinjected into the PVN. Our findings suggest that endogenous AT1 receptor-PKC activity is essential for presynaptic and postsynaptic NMDAR hyperactivity of PVN presympathetic neurons and for the augmented sympathetic outflow in hypertension. This information advances our mechanistic understanding of the interplay between angiotensinergic and glutamatergic excitatory inputs in hypertension.


Asunto(s)
Hipertensión/genética , Hipertensión/fisiopatología , Proteína Quinasa C/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Animales , Fenómenos Electrofisiológicos , Predisposición Genética a la Enfermedad , Masculino , Núcleo Hipotalámico Paraventricular/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor de Angiotensina Tipo 1/genética , Receptores de N-Metil-D-Aspartato
8.
Cent Eur J Immunol ; 44(3): 226-236, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31933533

RESUMEN

INTRODUCTION: Recent studies suggested that sulfur dioxide (SO2) can be produced endogenously by pulmonary vessels and attenuate acute lung injury (ALI) with vasorelaxant effects. This study was conducted to determine whether SO2 can inhibit lung inflammation and relax pulmonary arteries via inhibition of the mitogen-activated protein kinase (MAPK) pathway. MATERIAL AND METHODS: Forty-eight adult male Sprague Dawley rats (250~300 g) were randomly divided into six treatment groups: control (n = 8), control + SO2 (n = 8), control + L-aspartic acid-ß-hydroxamate (HDX) (n = 8), LPS (n = 8), LPS + SO2 (n = 8) and LPS + HDX (n = 8). RESULTS: Six hours after LPS treatment, rats exhibited elevated pulmonary artery hypertension (PAH), marked pulmonary structure injury with elevated pulmonary myeloperoxidase (MPO) activity and increased expression of intercellular adhesion molecule 1 (ICAM-1) and CD11b, along with decreased pulmonary SO2 production and reduced pulmonary aspartate aminotransferase (AAT) activity. Pretreatment with SO2 saline solution significantly reduced, while HDX (AAT inhibitor) aggravated, the pathogenesis of LPS-induced ALI. Moreover, SO2 saline solution significantly down-regulated expression of Raf-1, MEK-1 and phosphorylated ERK (p-ERK). It also prevented pulmonary hypertension in association with an up-regulated SO2/AAT pathway. However, HDX advanced pulmonary hypertension and inflammatory responses in the lung were associated with a down-regulated SO2/AAT pathway. CONCLUSIONS: Our results suggest that SO2 markedly relieved inflammatory responses, in association with Raf-1, MEK-1 and p-ERK during ALI induced by LPS. The down-regulation of the SO2/AAT pathway may be involved in the mechanism(s) of LPS-induced lung injury.

9.
J Physiol ; 596(17): 4269-4283, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29971791

RESUMEN

KEY POINTS: α2δ-1 is upregulated, promoting the interaction with NMDA receptors (NMDARs), in the hypothalamus in a rat model of hypertension. The prevalence of α2δ-1-bound NMDARs at synaptic sites in the hypothalamus is increased in hypertensive animals. α2δ-1 is essential for the increased presynaptic and postsynaptic NMDAR activity of hypothalamic neurons in hypertension. α2δ-1-bound NMDARs in the hypothalamus are critically involved in augmented sympathetic outflow in hypertensive animals. ABSTRACT: Increased glutamate NMDA receptor (NMDAR) activity in the paraventricular nucleus (PVN) of the hypothalamus leads to augmented sympathetic outflow in hypertension. However, the molecular mechanisms underlying this effect remain unclear. α2δ-1, previously considered to be a voltage-activated calcium channel subunit, is a newly discovered powerful regulator of NMDARs. In the present study, we determined the role of α2δ-1 in regulating synaptic NMDAR activity of rostral ventrolateral medulla (RVLM)-projecting PVN neurons in spontaneously hypertensive rats (SHRs). We show that the protein levels of α2δ-1 and NMDARs in synaptosomes and the α2δ-1-NMDAR complexes in the hypothalamus were substantially higher in SHRs than in normotensive control rats. The basal amplitude of evoked NMDAR currents and NMDAR-mediated synaptic glutamate release in RVLM-projecting PVN neurons were significantly increased in SHRs. Strikingly, inhibiting α2δ-1 activity with gabapentin or disrupting the α2δ-1-NMDAR association with an α2δ-1 C-terminus peptide completely normalized the amplitude of evoked NMDAR currents and NMDAR-mediated synaptic glutamate release in RVLM-projecting PVN neurons in SHRs. In addition, microinjection of the α2δ-1 C-terminus peptide into the PVN substantially reduced arterial blood pressure and renal sympathetic nerve discharges in SHRs. Our findings indicate that α2δ-1-bound NMDARs in the PVN are required for the potentiated presynaptic and postsynaptic NMDAR activity of PVN presympathetic neurons and for the elevated sympathetic outflow in hypertension. α2δ-1-bound NMDARs may be an opportune target for treating neurogenic hypertension.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Potenciales Postsinápticos Excitadores , Hipertensión/fisiopatología , Hipotálamo/fisiopatología , Núcleo Hipotalámico Paraventricular/fisiopatología , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Nervioso Simpático/fisiopatología , Animales , Ácido Glutámico/metabolismo , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
10.
Stroke ; 49(10): 2464-2472, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30355118

RESUMEN

Background and Purpose- Glutamate NMDARs (N-methyl-D-aspartate receptors) play a major role in the initiation of ischemic brain damage. However, NMDAR antagonists have no protective effects in stroke patients, possibly because they impair physiological functions of NMDARs. α2δ-1 (encoded by Cacna2d1) is strongly expressed in many brain regions. We determined the contribution of α2δ-1 to NMDAR hyperactivity and brain injury induced by ischemia and reperfusion. Methods- Mice were subjected to 90 minutes of middle cerebral artery occlusion followed by 24 hours of reperfusion. Neurological deficits, brain infarct volumes, and calpain/caspase-3 activity in brain tissues were measured. NMDAR activity of hippocampal CA1 neurons was measured in an in vitro ischemic model. Results- Middle cerebral artery occlusion increased α2δ-1 protein glycosylation in the cerebral cortex, hippocampus, and striatum. Coimmunoprecipitation showed that ischemia rapidly enhanced the α2δ-1-NMDAR physical interaction in the mouse brain tissue. Inhibiting α2δ-1 with gabapentin, uncoupling the α2δ-1-NMDAR interaction with an α2δ-1 C terminus-interfering peptide, or genetically ablating Cacna2d1 had no effect on basal NMDAR currents but strikingly abolished oxygen-glucose deprivation-induced NMDAR hyperactivity in hippocampal CA1 neurons. Systemic treatment with gabapentin or α2δ-1 C-terminus-interfering peptide or Cacna2d1 genetic knock-out reduced middle cerebral artery occlusion-induced infarct volumes, neurological deficit scores, and calpain/caspase-3 activation in brain tissues. Conclusions- α2δ-1 is essential for brain ischemia-induced neuronal NMDAR hyperactivity, and α2δ-1-bound NMDARs mediate brain damage caused by cerebral ischemia. Targeting α2δ-1-bound NMDARs, without impairing physiological α2δ-1-free NMDARs, may be a promising strategy for treating ischemic stroke.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Accidente Cerebrovascular/fisiopatología , Animales , Lesiones Encefálicas/fisiopatología , Isquemia Encefálica/fisiopatología , Canales de Calcio/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Infarto de la Arteria Cerebral Media/fisiopatología , Masculino , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Sales de Tetrazolio/farmacología
11.
J Neurochem ; 147(4): 526-540, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30203849

RESUMEN

Vesicular glutamate transporter-2 (VGluT2) mediates the uptake of glutamate into synaptic vesicles in neurons. Spinal cord dorsal horn interneurons are highly heterogeneous and molecularly diverse. The functional significance of VGluT2-expressing dorsal horn neurons in physiological and pathological pain conditions has not been explicitly demonstrated. Designer receptors exclusively activated by designer drugs (DREADDs) are a powerful chemogenetic tool to reversibly control neuronal excitability and behavior. Here, we used transgenic mice with Cre recombinase expression driven by the VGluT2 promoter, combined with the chemogenetic approach, to determine the contribution of VGluT2-expressing dorsal horn neurons to nociceptive regulation. Adeno-associated viral vectors expressing double-floxed Cre-dependent Gαq-coupled human M3 muscarinic receptor DREADD (hM3D)-mCherry or Gαi-coupled κ-opioid receptor DREADD (KORD)-IRES-mCitrine were microinjected into the superficial spinal dorsal horn of VGluT2-Cre mice. Immunofluorescence labeling showed that VGluT2 was predominantly expressed in lamina II excitatory interneurons. Activation of excitatory hM3D in VGluT2-expressing neurons with clozapine N-oxide caused a profound increase in neuronal firing and synaptic glutamate release. Conversely, activation of inhibitory KORD in VGluT2-expressing neurons with salvinorin B markedly inhibited neuronal activity and synaptic glutamate release. In addition, chemogenetic stimulation of VGluT2-expressing neurons increased mechanical and thermal sensitivities in naive mice, whereas chemogenetic silencing of VGluT2-expressing neurons reversed pain hypersensitivity induced by tissue inflammation and peripheral nerve injury. These findings indicate that VGluT2-expressing excitatory neurons play a crucial role in mediating nociceptive transmission in the spinal dorsal horn. Targeting glutamatergic dorsal horn neurons with inhibitory DREADDs may be a new strategy for treating inflammatory pain and neuropathic pain.


Asunto(s)
Nocicepción , Dolor/genética , Dolor/metabolismo , Células del Asta Posterior/metabolismo , Transmisión Sináptica , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Animales , Fenómenos Electrofisiológicos , Humanos , Hiperalgesia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuralgia/fisiopatología , Dolor/psicología , Umbral del Dolor , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Receptor Muscarínico M2/biosíntesis , Receptor Muscarínico M2/genética , Proteína 2 de Transporte Vesicular de Glutamato/genética
12.
Cell Physiol Biochem ; 50(5): 1891-1902, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30396162

RESUMEN

BACKGROUND/AIMS: Myocardial ischemia/reperfusion (I/R) or hypoxia/reoxygenation (H/R) injury is always characterized by Ca2+ overload, energy metabolism disorder and necrocytosis of cardiomyocytes. We showed previously that chronic intermittent hypobaric hypoxia (CIHH) improves cardiac function during I/R through improving cardiac glucose metabolism. However, the underlying cellular and molecular mechanisms of CIHH treatment improving energy metabolism in cardiomyocytes are still unclear. In this study, we determined whether and how CIHH protects cardiomyocytes from Ca2+ overload and necrocytosis through energy regulating pathway. METHODS: Adult male Sprague-Dawley rats were randomly divided into two groups: control (CON) and CIHH group. CIHH rats received a hypobaric hypoxia simulating 5,000-m altitude for 28 days, 6 hours each day, in hypobaric chamber. Rat ventricular myocytes were obtained by enzymatic dissociation. The intracellular calcium concentration ([Ca2+]i) and cTnI protein expression were used to evaluate the degree of cardiomyocytes injury during and after H/R. The mRNA and protein expressions involved in cardiac energy metabolism were determined using quantitative PCR and Western blot techniques. PGC-1α siRNA adenovirus transfection was used to knock down PGC-1α gene expression of cardiomyocytes to determine the effect of PGC-1α in the energy regulating pathway. RESULTS: H/R increased [Ca2+]i and cTnI protein expression in cardiomyocytes. CIHH treatment decreased [Ca2+]i (p< 0.01) and cTnI protein expression (p< 0.01) in cardiomyocytes after H/R. Both mRNA and protein expression of PGC-1α increased after CIHH treatment, which was reversed by PGC-1α siRNA adenovirus transfection. Furthermore, CIHH treatment increased the expression of HIF-1α, AMPK and p-AMPK in cardiomyocytes, and pretreatment with AMPK inhibitor dorsomorphin abolished the enhancement of PGC-1α protein expression in cardiomyocytes by CIHH (p< 0.01). In addition, PGC-1α knock down also abolished the increased protein level of GLUT4 (p< 0.01) and decreased the protein level of CPT-1b (p< 0.05) in cardiomyocytes by CIHH treatment. CONCLUSION: CIHH treatment could reduce the calcium overload and H/R injury in cardiomyocytes by up-regulating the expression of PGC-1α and regulating the energy metabolism of glucose and lipid. The HIF-1α-AMPK signaling pathway might be involved in the process.


Asunto(s)
Miocitos Cardíacos/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Calcio/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Hipoxia de la Célula/genética , Células Cultivadas , Transportador de Glucosa de Tipo 4/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/antagonistas & inhibidores , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Pirazoles/farmacología , Pirimidinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Troponina I/metabolismo , Regulación hacia Arriba/efectos de los fármacos
13.
Gen Physiol Biophys ; 37(5): 537-547, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30307404

RESUMEN

It was established that adaptation to chronic continuous normobaric hypoxia (CCNH) increases cardiac tolerance to ischemia and reperfusion. It was performed coronary artery occlusion (20 min) and reperfusion (3 h) in Wistar rats. CCNH promoted a decrease in the infarct size/area at risk ratio in 2-fold. CCNH promoted an increase in the nitrite/nitrate levels in blood serum and myocardium. Pretreatment with protein kinase C (PKC) inhibitor chelerythrine, NO-synthase (NOS) inhibitor L-NAME, iNOS inhibitor S-methylisothiourea, KATP channel blocker glibenclamide, mitoKATP channel blocker 5-hydroxydecanoic acid abolished the infarct-reducing effect of CCNH. The non-selective tyrosine kinase inhibitor genistein attenuated but not eliminated infarct-sparing effect of CCNH. The nNOS inhibitor 7-nitroindazole, sarcKATP channel blocker HMR 1098, MPT pore inhibitor atractyloside, PI3 kinase inhibitor wortmannin did not reverse infarct-limiting effect of CCNH. It was concluded that infarct-reducing effect of CCNH is mediated via PKC, iNOS activation and mitoKATP channel opening. While nNOS, PI3 kinase, sarcKATP channel, MPT pore are not involved in the development of CCNH-induced cardiac tolerance to impact of ischemia-reperfusion.


Asunto(s)
Canales KATP/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocardio/citología , Óxido Nítrico Sintasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Arritmias Cardíacas/patología , Hipoxia de la Célula , Hemodinámica , Masculino , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio/patología , Miocardio/patología , Nitratos/sangre , Nitritos/sangre , Ratas , Ratas Wistar , Transducción de Señal
14.
Zhonghua Nan Ke Xue ; 24(6): 553-557, 2018 Jun.
Artículo en Zh | MEDLINE | ID: mdl-30173463

RESUMEN

OBJECTIVE: To know the basic status of researches on the mental health of prostatitis patients in China by statistical analysis of the literature published in the past two decades and provide some reference for such studies. METHODS: Using the bibliometrics method, we performed statistical analyses on the publication years, journals, and authors of the articles published in the core journals concerning the mental health of prostatitis patients in China as well as on the topics of the identified studies using their titles, key words and abstracts. RESULTS: Totally, 226 related studies were identified, of which 31 (by 29 authors) were published in the Chinese core journals. As for the topics of the included studies, 102 (45.13%) focused on the role and significance of psychotherapy in the treatment of prostatitis, 52 (23.01%) on the correlation of psychological factors with prostatitis, and 23 (10.18%) on the correlation of psychopathic factors with prostatitis complicated by sexual dysfunction. Most of the articles on the mental health of prostatitis patients were published in National Journal of Andrology. CONCLUSIONS: Studies on the mental health of prostatitis patients in China are carried out in varied institutions and different directions but, however, need to be furthered and deepened. For this condition, a comprehensive therapeutic mode of "prevention-communication-treatment" is coming into being, and the methodology for related researches is gradually turning from linear to stereoscopic.


Asunto(s)
Bibliometría , Salud Mental , Prostatitis/psicología , Prostatitis/terapia , Psicoterapia , Andrología/estadística & datos numéricos , China , Humanos , Masculino
15.
Pediatr Res ; 80(1): 128-35, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26991264

RESUMEN

BACKGROUND: Evaluations of stress-induced cardiac functional alterations in adults after neonatal glucocorticoid (GC) treatment have been limited. In the present study, we evaluated adult cardiac functional recovery during postischemic reperfusion and measured cardiac gene expression involved energy metabolism in rats neonatally treated with dexamethasone (DEX). METHOD: Male Wistar rats were injected DEX in first 3 d after birth and controls were received saline (SAL). At 24 wk of age, insulin tolerance tests were performed, plasma lipid levels were measured, and left ventricular function and myocardial infarct size were evaluated. Expressions of genes involved in cardiac energy metabolism were measured by quantitative real-time polymerase chain reaction (PCR) and western blot. RESULTS: In 24-wk-old rats, neonatal DEX administration caused dyslipidemia, impaired cardiac recovery function and increased size of infarction, decreased cardiac expression of glucose transporter 4(GLUT4), peroxisome proliferative-activated receptor gamma coactivator 1α (PGC-1α) and ratios of phospho-forkhead box O1/forkhead box O1 (p-FoxO1/FoxO1) and phospho AMP-activated protein kinase/AMP-activated protein kinase (p-AMPK/AMPK) but increased pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) expression compared with controls. CONCLUSION: Neonatal DEX administration impairs cardiac functional recovery during reperfusion following ischemia in 24-wk-old rats. Reduced cardiac glucose utilization may contribute to the long-term detrimental effects caused by neonatal DEX treatment.


Asunto(s)
Dexametasona/uso terapéutico , Corazón/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Metabolismo Energético/efectos de los fármacos , Glucocorticoides/farmacología , Glucosa/metabolismo , Masculino , Mitocondrias/metabolismo , Infarto del Miocardio/fisiopatología , Reperfusión Miocárdica , Miocardio/metabolismo , Proteínas Quinasas/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo
16.
Can J Physiol Pharmacol ; 94(9): 973-8, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27408985

RESUMEN

Naringenin (Nari) has antioxidative and anti-atherosclerosis effects, and activation of ATP-sensitive potassium channel (KATP) can offer cardiac protection. We hypothesized that Nari protects the heart against ischemia-reperfusion (I-R) injury through activation of KATP. Isolated hearts from adult male Sprague-Dawley rats experienced a 30-min global ischemia followed by 60-min reperfusion (120 min for the infarct size determination). The hearts were treated with Nari (NARI); Nari plus glibenclamide (GLI), a non-specific ATP-sensitive potassium channel blocker (NARI+GLI); and Nari plus 5-hydroxy decanoic acid (5-HD), a mitochondrial membrane ATP-sensitive potassium channel blocker (NARI+5-HD). The left ventricular pressure, lactate dehydrogenates (LDH) in coronary effluent, superoxide dismutase (SOD) and malondialdehyde (MDA) in myocardium, and myocardial infarct area were measured. Nari above 2.5 µmol/L improved the recovery of left ventricular function, decreased LDH in coronary effluent, and reduced myocardial infarct area. The SOD activity was increased and MDA was decreased in Nari-treated myocardium. The cardioprotective effect of Nari was canceled by GLI and 5-HD. In conclusion, Nari has a cardioprotective effect against I-R injury, which may be carried out through activating ATP-sensitive potassium channels in both cell and mitochondrial membrane, and enhancing myocardial antioxidant capacity.


Asunto(s)
Cardiotónicos/farmacología , Flavanonas/farmacología , Canales KATP/agonistas , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Animales , Cardiotónicos/uso terapéutico , Ácidos Decanoicos/farmacología , Flavanonas/antagonistas & inhibidores , Flavanonas/uso terapéutico , Gliburida/farmacología , Corazón/efectos de los fármacos , Corazón/fisiopatología , Hidroxiácidos/farmacología , Canales KATP/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , Masculino , Malondialdehído/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocardio/metabolismo , Miocardio/patología , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Superóxido Dismutasa/metabolismo
17.
Can J Physiol Pharmacol ; 93(4): 227-32, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25563803

RESUMEN

This study investigated the anti-arrhythmic effects from chronic intermittent hypobaric hypoxia (CIHH) and the cellular mechanisms in rats with metabolic syndrome. Male Sprague-Dawley rats were randomly distributed among the control, fructose-fed (fed with 10% fructose in the drinking water to induce metabolic syndrome), CIHH (42 days of hypobaric hypoxia treatment simulating an altitude of 5000 m a.s.l.: PB = 404 mm Hg, PO2 = 84 mm Hg, 6 h per day), and the CIHH plus fructose (CIHH-F) groups. In anesthetized rats, the arrhythmia score was determined after 30 min of cardiac ischemia followed by 120 min of reperfusion. Action potentials (AP) were recorded from isolated ventricular papillary muscles. The arrhythmia score was much lower in CIHH-F rats than in the fructose-fed rats. Under basic conditions, AP duration (APD) was significantly shortened in fructose-fed rats, but obviously prolonged in CIHH rats compared with that of the control rats. During ischemia, the AP amplitude, the maximal rate of rise of phase 0, APD, and resting potential, were lower in the control, fructose-fed, and CIHH-F groups, but were not changed in the CIHH rats. The lower AP during ischemia did not recover after washout for the fructose-fed rats. In conclusion, CIHH protects the heart against ischemia-reperfusion induced arrhythmia in rats with metabolic syndrome. This effect of CIHH is possibly related to baseline prolongation of the AP and attenuation of AP reduction during ischemia-reperfusion.


Asunto(s)
Mal de Altura/fisiopatología , Arritmias Cardíacas/prevención & control , Oclusión Coronaria/etiología , Modelos Animales de Enfermedad , Precondicionamiento Isquémico Miocárdico/métodos , Síndrome Metabólico/terapia , Daño por Reperfusión Miocárdica/prevención & control , Potenciales de Acción , Animales , Arritmias Cardíacas/etiología , Cámaras de Exposición Atmosférica , Oclusión Coronaria/fisiopatología , Dieta/efectos adversos , Electrocardiografía , Fructosa/efectos adversos , Ligadura , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/fisiopatología , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/fisiopatología , Músculos Papilares/fisiopatología , Distribución Aleatoria , Ratas Sprague-Dawley , Factores de Tiempo
18.
Clin Exp Pharmacol Physiol ; 42(9): 950-955, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26173564

RESUMEN

Emerging evidence has indicated that anandamide (AEA) is able to stimulate vasorelaxation in both spontaneously hypertensive rats (SHRs) and L-NAME-induced hypertensive rats. Yet it remains unknown whether AEA modulates vasomotion of the aorta in renovascular hypertensive (RVH) rats. The aim of present study is to explore the effect of AEA on the relaxation of thoracic aortas in two-kidney one-clip (2K1C)-induced RVH rats. It is demonstrated that AEA stimulates a pronounced relaxation in the aortas of 2K1C rats compared with sham rats. The enhanced relaxation caused by AEA in aortas from 2K1C rats was diminished in the presence of the cannabinoid receptor-1 (CB1 ) antagonist AM251 and the CB2 receptor antagonist AM630. Likewise, the vasodilation action of AEA was blocked in L-NAME-treated or endothelium-denuded aortas. The Western blot results revealed that the expression of CB1 and CB2 receptors was increased in the 2K1C rat aortas compared with sham rats. The phosphorylation of endothelial nitric oxide synthase (p-eNOS) at the activation site Ser1177 was enhanced in AEA-treated rings from 2K1C rats in both time-dependent and dose-dependent manners. The augmented p-eNOS expression was inhibited by the co-treatment with AM251 or AM630. Taken together, the present study demonstrated that AEA enhanced endothelium-dependent aortic relaxation through activation of both CB1 and CB2 receptors and P-eNOS/NO pathway in 2K1C rats.

19.
Poult Sci ; 94(3): 395-401, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25681476

RESUMEN

Ca2+ plays a major role in the regulation of signal transduction. Transient receptor potential vanilloid 6 is a Ca2+-selective channel that serves as an important rate-limiting step in the facilitation of Ca2+ entry into cells, but little is known about the regulation of transient receptor potential vanilloid 6 in chickens. In this study, we evaluated the effects of transient receptor potential vanilloid 6 gene interference on the expression of calbindin-D28K, Na+/Ca2+ exchangers, and plasma membrane Ca2+ ATPase 1b to investigate the mechanism underlying the regulation of transient receptor potential vanilloid 6. Three hairpin siRNA expression vectors targeting transient receptor potential vanilloid 6 (pSIREN- transient receptor potential vanilloid 6) and a negative control (pSIREN-control) were constructed and transfected into chicken osteoblasts. The mRNA and protein expression levels were evaluated by quantitative reverse transcription polymerase chain reaction and Western blot, respectively. The mRNA expression levels of transient receptor potential vanilloid 6 and calbindin-D28K were reduced by 45.7% (P<0.01) and 27.9% (P<0.01), respectively, 48 h after transfection with one of the three constructs (pSIREN- transient receptor potential vanilloid 6-3) compared with the level obtained in the untreated group. There was no significant difference in the mRNA expression levels of Na+/Ca2+ exchangers and plasma membrane Ca2+ ATPase 1b. The protein expression levels of transient receptor potential vanilloid 6 and calbindin-D28K were reduced by 40.2% (P<0.01) and 29.8% (P<0.01), respectively, 48 h after transfection with pSIREN-transient receptor potential vanilloid 6-3 compared with the level obtained in the untreated group. In conclusion, the vector-based transient receptor potential vanilloid 6-shRNA can efficiently suppress the mRNA and protein expression of transient receptor potential vanilloid 6 in chicken osteoblasts, and transient receptor potential vanilloid 6 regulates the expression of calbindin-D28K during Ca2+ transport.


Asunto(s)
Proteínas Aviares/genética , Calbindinas/genética , Pollos/genética , Silenciador del Gen , Osteoblastos/metabolismo , Canales Catiónicos TRPV/genética , Animales , Proteínas Aviares/metabolismo , Western Blotting/veterinaria , Calbindinas/metabolismo , Embrión de Pollo , Pollos/metabolismo , Técnicas de Silenciamiento del Gen , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Reacción en Cadena de la Polimerasa/veterinaria , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo , Canales Catiónicos TRPV/metabolismo , Transfección/veterinaria
20.
Cell Physiol Biochem ; 34(2): 313-24, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25096990

RESUMEN

BACKGROUND/AIMS: Chronic intermittent hypobaric hypoxia (CIHH) protects the heart against ischemia/reperfusion (I/R) injury. This study investigated the calcium homeostasis mechanism and the role of Na(+)/Ca(2+) exchanger (NCX) in the cardiac protective effect of CIHH in developing rats. METHODS: Neonatal male rats received CIHH treatment or no treatment (control) in a hypobaric chamber simulating 3000-meter altitude for 42 days. The left ventricular function of isolated hearts was evaluated after 30 minutes of ischemia and 60 minutes of reperfusion. Myocardial infarct size, intracellular Ca(2+) concentration ([Ca(2+)]i), Na(+)-Ca(2+) exchanger currents (I(Na/Ca)) in ventricular myocytes, and NCX1 protein level in the sarcolemmal membrane were determined. RESULTS: The recovery of cardiac function after I/R was improved, with the myocardial infarct size reduced, in CIHH rats compared with control rats (p<0.05). These effects were attenuated by Bay K8644, an L-type Ca(2+) channel agonist, or ryanodine, a sarcoplasmic reticulum Ca(2+) channel receptor activator. Furthermore, the increases in [Ca(2+)]i during I/R were blunted in CIHH rats, but this effect was abolished by Bay K8644 or chelerythrine, a protein kinase C (PKC) inhibitor. The I(Na/Ca) was decreased and the reversal potential of INa/Ca was shifted toward negative potential during simulated ischemia in the control cardiomyocytes (p<0.05). The inhibition of NCX1 protein expression during I/R was smaller in the CIHH rats than in the control rats (p<0.05). CONCLUSION: These data suggest that CIHH protects developing rat hearts during I/R by enhancing the resistance against calcium overload and by preserving normal I(Na/Ca) and NCX1 protein. PKC activation might be involved in this protective process of CIHH.


Asunto(s)
Calcio/metabolismo , Corazón/fisiopatología , Hipoxia/fisiopatología , Daño por Reperfusión/prevención & control , Intercambiador de Sodio-Calcio/fisiología , Animales , Animales Recién Nacidos , Técnicas In Vitro , Masculino , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA