Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Inorg Chem ; 63(16): 7504-7511, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38598777

RESUMEN

Lamellar metal-organic frameworks (MOFs) have attracted significant attention in the field of electrochemical sensing due to their abundant open active sites and specific electron conductivity. Herein, by employing a bottom-up synthesis strategy, rhombic lamellar heterometallic CoNi-MOFs with varying thicknesses are constructed. This is achieved by using 4-methylpyridine as a capping agent based on the (4,6)-linked Co2(azpy)2(bptc) (azpy = 4,4'-azopyridine, bptc = 3,3',5,5'-biphenyltetracarboxylic acid) structure with a fsc topology and by introducing Ni species simultaneously. To mitigate sulfur deposition on electrodes, the triple pulse amperometry (TPA) method is employed. Among the synthesized lamellar CoNi-MOFs, lamellar CoNi-MOF-3 with the minimum thickness exhibits an optimal electrochemical sensing performance toward hydrogen sulfide, with a sensitivity of 119.3 µA·mM-1·cm-2 in the linear range of 2-2000 µM. This study pioneers a new approach to the controlled construction and electrochemical activity modification of lamellar MOF materials.

2.
Angew Chem Int Ed Engl ; 62(8): e202217662, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36585907

RESUMEN

Two C2 H6 -selective metal-organic framework (MOF) adsorbents with ultrahigh stability, high surface areas, and suitable pore size have been designed and synthesized for one-step separation of ethane/ethylene (C2 H6 /C2 H4 ) under humid conditions to produce polymer-grade pure C2 H4 . Experimental results reveal that these two MOFs not only adsorb a high amount of C2 H6 but also display good C2 H6 /C2 H4 selectivity verified by fixed bed column breakthrough experiments. Most importantly, the good water stability and hydrophobic pore environments make these two MOFs capable of efficiently separating C2 H6 /C2 H4 under humid conditions, exhibiting the benchmark performance among all reported adsorbents for separation of C2 H6 /C2 H4 under humid conditions. Moreover, the affinity sites and their static adsorption energies were successfully revealed by single crystal data and computation studies. Adsorbents described in this work can be used to address major chemical industrial challenges.

3.
Angew Chem Int Ed Engl ; 61(11): e202116736, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-34995001

RESUMEN

In the surroundings of carbon neutrality, nano-Cu2 O is considered a promising catalyst for the electrochemical CO2 reduction reaction (ECO2 RR), whose improvements in product selectivity still require considerable efforts. Here, we present an efficient strategy for controlling the ECO2 RR product by modifying the surface of nano-Cu2 O, i.e., by controlling the exposed facets via a reductant-controlled method to achieve the highest C2 H4 selectivity (Faradic efficiency=74.1 %) for Cu2 O-based catalysts in neutral electrolytes, and introducing a well-suited metal-organic framework (MOF) coating on the surface of nano-Cu2 O to obtain syngas completely with an appropriate H2 :CO ratio. Detailed mechanism and key intermediate have been illustrated by DFT calculations. Our systematic strategy is expected to control the ECO2 RR product, improve the selectivity, and provide a reliable method for CO2 management and the green production of important carbon resources.

4.
J Am Chem Soc ; 143(20): 7732-7739, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33985332

RESUMEN

It is of profound significance with regard to the global energy crisis to develop new techniques and materials that can convert the chemical potential of water into other forms of energy, especially electricity. To address this challenge, we built a new type of energy transduction pathway (humidity gradients → mechanical work → electrical power) using moisture-responsive crystalline materials as the media for energy transduction. Single-crystal data revealed that a flexible zeolitic pyrimidine framework material, ZPF-2-Co, could undergo a reversible structural transformation (ß to α phase) with a large unit cell change upon moisture stimulus. Dynamic water vapor sorption analysis showed a gate-opening effect with a steep uptake at as low as 10% relative humidity (RH). The scalable green synthesis approach and the fast water vapor adsorption-desorption kinetics made ZPF-2-Co an excellent sorbent to harvest water from arid air, as verified by real water-harvesting experiments. Furthermore, we created a gradient distribution strategy to fabricate polymer-hybridized mechanical actuators based on ZPF-2-Co that could perform reversible bending deformation upon a variation of the humidity gradient. This mechanical actuator showed remarkable durability and reusability. Finally, coupling the moisture-responsive actuator with a piezoelectric transducer further converted the mechanical work into electrical power. This work offers a new type of moisture-responsive smart material for energy transduction and provides an in-depth understanding of the responsive mechanism at the molecular level.

5.
Inorg Chem ; 60(9): 6514-6520, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33890466

RESUMEN

Metal-organic framework (MOF)-supported metal/metal compound nanoparticles (NPs) have emerged as a new class of composite catalysts. However, huge challenges prevail in placing such NPs in the MOF pores because of the poor solubility of metal/metal oxides, limited availability of suitable precursors, metastable attribute of given metal ions, and lower thermal stability of MOFs compared to conventional porous materials. Based on the difference between the thermal stability of the precursor and MOFs, we successfully developed a controlled thermal conversion (CTC) method to load cobalt(II) oxide (CoO) NPs into the framework of MOF (MIL-101) to conveniently obtain a composite catalyst, CoO@MIL-101, which is a very rare example of pure CoO NP-loaded composite catalyst that shows excellent catalytic activity in the selective oxidation of benzyl alcohol. This CTC strategy opens up a pathway for impregnating MOF supports with specific NPs, which is further confirmed by preparing the first CuBr@MOF-type composite catalyst.

6.
Inorg Chem ; 60(15): 11626-11632, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34291940

RESUMEN

Metal-organic frameworks (MOFs) represent an ideal platform for the construction of highly active composite catalysts. However, loading metastable and/or multicomponent metal compounds into MOFs remains a synthetic bottleneck due to the great challenge of keeping the guest and matrix intact during the preparation of a composite. In this work, we develop a new impregnation reduction surface modification (IRSM) strategy to give a new composite catalyst CuCl@MIL-101(Cr), which is successfully postmodified by in situ construction of CuII defects on the surface of loaded CuCl inside MOF pores, leading to the new composite material CuII/CuI@MIL-101(Cr). The new dual-component composite catalyst exhibits a hierarchical structure and superior catalytic activity in C-C homocoupling of arylboronic acids under green conditions. This study presents a facile strategy for improving the catalytic activity by constructing defects on the surface of MOF-based catalysts as well as for forming multiple-component composite materials.

7.
Small ; 15(32): e1804849, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30756464

RESUMEN

Metal-organic frameworks (MOFs) are constructed by periodically alternate metal ions with organic ligands, which offer structural diversity and a wide range of interesting properties as an attractive classification of crystalline porous materials. Integration of MOFs with other size-limited functional centers can supply new multifunctional composites, which exhibit both the properties of the components and new characteristics due to the combination of MOFs with the selected loadings. In recent years, integration of metal/metal oxide nanoparticles (MNPs) into MOFs to form the composite catalysts has attracted considerable attention due to the superior performance. In this review, the latest studies and up-to-date developments on the design and synthetic strategy of new MNP@MOF composite catalysts are specifically highlighted. Both the achievements and problems are evaluated and proposed, and the opportunities and challenges of MNP@MOF composite catalysts are discussed.

8.
Inorg Chem ; 57(20): 12475-12479, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30256113

RESUMEN

Two new iron(II) complexes with 1D chain and 2D network structures have been successfully synthesized and characterized. One of the complexes exhibits a pressure-induced spin-crossover property with a reversible color change from white to purple at room temperature. The special property makes it a suitable candidate as a pressure sensor.

9.
Angew Chem Int Ed Engl ; 57(23): 6834-6837, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29520923

RESUMEN

The integration of metal/metal oxide nanoparticles (NPs) into metal-organic frameworks (MOFs) to form composite materials has attracted great interest due to the broad range of applications. However, to date, it has not been possible to encapsulate metastable NPs with high catalytic activity into MOFs, due to their instability during the preparation process. For the first time, we have successfully developed a template protection-sacrifice (TPS) method to encapsulate metastable NPs such as Cu2 O into MOFs. SiO2 was used as both a protective shell for Cu2 O nanocubes and a sacrificial template for forming a yolk-shell structure. The obtained Cu2 O@ZIF-8 composite exhibits excellent cycle stability in the catalytic hydrogenation of 4-nitrophenol with high activity. This is the first report of a Cu2 O@MOF-type composite material. The TPS method provides an efficient strategy for encapsulating unstable active metal/metal oxide NPs into MOFs or maybe other porous materials.

10.
Inorg Chem ; 56(6): 3414-3420, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28263612

RESUMEN

The materials Ag@MIL-100(Fe) and Ag@UIO-66(Zr) are obtained for the capture and transformation of CO2 into alkynyl carboxylic acids, which are environmental friendly, facile to synthesize, and exhibit excellent efficiency and reusability. The influence on the catalytic activity of such Ag@MOF systems by metal-organic frameworks' (MOFs) surface area, thermal, and chemical stability, especially the acid-base characteristics of the pores, are compared and discussed systematically.

11.
J Am Chem Soc ; 137(47): 14873-6, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26561868

RESUMEN

Controlled assembly of 0D supramolecular nanocages into 2D or 3D architectures has been demonstrated for the first time via a coordination-driven polymerization approach, and the conversion from a 2D to 3D supramolecular architecture has also been successfully achieved via a temperature-induced crystal transformation. The boost of dimensionality for the supramolecular architecture has led to steady yet remarkable enhancement of properties, as reflected from the gas adsorption studies.

12.
Angew Chem Int Ed Engl ; 54(3): 988-91, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25385217

RESUMEN

Silver nanoparticles were successfully supported on the zeolite-type metal-organic framework MIL-101 to yield Ag@MIL-101 by a simple liquid impregnation method. For the first time, the conversion of terminal alkynes into propiolic acids with CO2 was achieved by the use of the Ag@MIL-101 catalysts. Owing to the excellent catalytic activity, the reaction proceeded at atmospheric pressure and low temperature (50 °C). The Ag@MIL-101 porous material is of outstanding bifunctional character as it is capable of simultaneously capturing and converting CO2 with low energy consumption and can be recovered easily by centrifugation.

13.
Biomed Pharmacother ; 173: 116262, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394845

RESUMEN

BACKGROUND: The glucose derivative 3-O-methyl-D-glucose (OMG) is used as a cryoprotectant in freezing cells. However, its protective role and the related mechanism in static cold storage (CS) of organs are unknown. The present study aimed to investigate the effect of OMG on cod ischemia damage in cold preservation of donor kidney. METHODS: Pretreatment of OMG on kidney was performed in an isolated renal cold storage model in rats. LDH activity in renal efflux was used to evaluate the cellular damage. Indicators including iron levels, mitochondrial damage, MDA level, and cellular apoptosis were measured. Kidney quality was assessed via a kidney transplantation (KTx) model in rats. The grafted animals were followed up for 7 days. Ischemia reperfusion (I/R) injury and inflammatory response were assessed by biochemical and histological analyses. RESULTS: OMG pretreatment alleviated prolonged CS-induced renal damage as evidenced by reduced LDH activities and tubular apoptosis. Kidney with pCS has significantly increased iron, MDA, and TUNEL+ cells, implying the increased ferroptosis, which has been partly inhibited by OMG. OMG pretreatment has improved the renal function (p <0.05) and prolonged the 7-day survival of the grafting recipients after KTx, as compared to the control group. OMG has significantly decreased inflammation and tubular damage after KTx, as evidenced by CD3-positive cells and TUNEL-positive cells. CONCLUSION: Our study demonstrated that OMG protected kidney against the prolonged cold ischemia-caused injuries through inhibiting ferroptosis. Our results suggested that OMG might have potential clinical application in cold preservation of donor kidney.


Asunto(s)
Ferroptosis , Daño por Reperfusión , Ratas , Animales , 3-O-Metilglucosa/farmacología , Isquemia Fría/efectos adversos , Preservación de Órganos/métodos , Riñón , Daño por Reperfusión/prevención & control , Daño por Reperfusión/patología , Isquemia/patología , Hierro
14.
Mater Horiz ; 11(8): 1957-1963, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38348621

RESUMEN

Fixation of CO2 into dihydroisobenzofuran derivatives has enormous applications in both production of natural products and antidepressant drugs, and reducing the green-house effect. However, the relatively complicated multi-step processes limit the further expansion of such a valuable CO2 conversion strategy. Herein, we hierarchically modify the surface of Cu nanoparticles (NPs) with Ag NPs and the robust metal-organic framework (MOF), ZIF-8, and report the presence of the Cu-Ag yolk-shell nanoalloy based heterogeneous catalysts, Cu@Ag and Cu@Ag@ZIF-8. The latter exhibits a crystalline "raisin bread" structure and specific synergic activity for catalyzing the tandem reactions of intra-molecular H-transfer, C-C and C-O coupling, cyclization, and carboxylation from CO2, leading to the first non-homogeneous preparation of dihydroisobenzofuran derivatives in high yield, selectivity, and recyclability under mild conditions. Theoretical calculations elucidate the tandem reaction pathway synergically catalyzed by Cu@Ag@ZIF-8, which offers insights for designing multiphase catalysts towards both organic synthesis and CO2 fixation through tandem processes in one pot.

15.
Inorg Chem ; 52(7): 3738-43, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23506228

RESUMEN

Both bulk crystals and nanocrystals of two helical complexes, [Cu(µ2-L)(H2O)]n (1) and {[Cu(µ2-L)(H2O)]·2H2O}n (2) (H2L = thiazolidine-2,4-dicarboxylic acid), have been synthesized with the chiralities of right-handedness (1) and left-handedness (2), respectively. 4-Cyanopyridine and poly(vinylpyrrolidone) (PVP) have been applied to control the synthesis of complexes with different helicities in bulk-crystal and nanocrystal forms, respectively. 2 can be irreversibly transformed to 1 under heating. Associated with the conformation changing, the symmetry alters between nonpolar and polar space groups.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Nanopartículas del Metal/química , Tiazolidinas/química , Cristalografía por Rayos X , Nanopartículas del Metal/ultraestructura , Modelos Moleculares , Estructura Molecular , Nitrilos/química , Povidona/química , Piridinas/química , Estereoisomerismo
16.
ChemSusChem ; 16(7): e202201974, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36588092

RESUMEN

The widespread use of chemicals has brought serious water pollution threatening human health and environment, which requires green, fast, and low-cost purification urgently. Here, we build up a novel material family of sky-parking-like 3D structured graphene oxides (SP-GOs) with adjustable interlayer-space of 0.8-1.7 nm via the insertion of different sized diamine compounds as support pillars between GO layers. The assembled 3D SP-GOs exhibit superior adsorption capacity and short removal time for various aromatic organic compounds in water, achieving record-breaking maximum adsorption capacity of 535.79 mg g-1 toward the most common water-pollutant bisphenol A (BPA) at ambient conditions as well as significantly improved removal of other organic pollutants including sulfapyridine, carbamazepine, ketoprofen and 2-naphthol. The construction of SP-GO provides a simple approach for evolving the GO material from 2D to 3D and a new avenue for the decontamination of pollutants in environmental remediation.

17.
Adv Sci (Weinh) ; 10(26): e2302881, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37394727

RESUMEN

Catalytic conversion of CO2 into high value-added chemicals using renewable energy is an attractive strategy for the management of CO2 . However, achieving both efficiency and product selectivity remains a great challenge. Herein, a brand-new family of 1D dual-channel heterowires, Cu NWs@MOFs are constructed by coating metal-organic frameworks (MOFs) on Cu nanowires (Cu NWs) for electro-/photocatalytic CO2 reductions, where Cu NWs act as an electron channel to directionally transmit electrons, and the MOF cover acts as a molecule/photon channel to control the products and/or undertake photoelectric conversion. Through changing the type of MOF cover, the 1D heterowire is switched between electrocatalyst and photocatalyst for the reduction of CO2 with excellent selectivity, adjustable products, and the highest stability among the Cu-based CO2 RR catalysts, which leads to heterometallic MOF covered 1D composite, and especially the first 1D/1D-type Mott-Schottky heterojunction. Considering the diversity of MOF materials, the ultrastable heterowires offer a highly promising and feasible solution for CO2 reduction.

18.
Cryst Growth Des ; 23(7): 5211-5220, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37426545

RESUMEN

Chiral metal-organic materials (CMOMs), can offer molecular binding sites that mimic the enantioselectivity exhibited by biomolecules and are amenable to systematic fine-tuning of structure and properties. Herein, we report that the reaction of Ni(NO3)2, S-indoline-2-carboxylic acid (S-IDECH), and 4,4'-bipyridine (bipy) afforded a homochiral cationic diamondoid, dia, network, [Ni(S-IDEC)(bipy)(H2O)][NO3], CMOM-5. Composed of rod building blocks (RBBs) cross-linked by bipy linkers, the activated form of CMOM-5 adapted its pore structure to bind four guest molecules, 1-phenyl-1-butanol (1P1B), 4-phenyl-2-butanol (4P2B), 1-(4-methoxyphenyl)ethanol (MPE), and methyl mandelate (MM), making it an example of a chiral crystalline sponge (CCS). Chiral resolution experiments revealed enantiomeric excess, ee, values of 36.2-93.5%. The structural adaptability of CMOM-5 enabled eight enantiomer@CMOM-5 crystal structures to be determined. The five ordered crystal structures revealed that host-guest hydrogen-bonding interactions are behind the observed enantioselectivity, three of which represent the first crystal structures determined of the ambient liquids R-4P2B, S-4P2B, and R-MPE.

19.
Inorg Chem ; 51(8): 4784-90, 2012 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-22458476

RESUMEN

Chiral Ni(II) coordination compounds with structures of [NiL(H(2)O)(3)] (1) and {[NiL(H(2)O)]·0.5H(2)O}(n) (2) (H(2)L = thiazolidine 2,4-dicaboxlic acid) have been successfully synthesized by the reaction of Ni(CH(3)COO)(2)·4H(2)O and H(2)L in aqueous solution at 25 and 80 °C, respectively. From the same procedure with polyvinylpyrrolidone (PVP) as a surfactant, another corresponding micrometer-scale Ni(II) coordination polymer, {[NiL(H(2)O)(2)]·H(2)O}(n) (3), has been obtained at both 25 and 80 °C, which shows a different structure (one-dimensional, 1D) than both 1 (discrete molecule) and 2 (3D). The conversions of structures and conformations are directed by temperature and surfactant (PVP), as confirmed by powder and single-crystal X-ray diffraction. Circular Dichroism (CD) and Second Harmonic Generation (SHG) measurements of the products have been investigated as well, which indicate the potential applications of these products in chiral and nonlinear optical (NLO) areas.


Asunto(s)
Níquel/química , Povidona/química , Temperatura , Microesferas , Modelos Moleculares , Conformación Molecular , Fenómenos Ópticos , Estereoisomerismo
20.
ChemSusChem ; 15(19): e202201386, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35959848

RESUMEN

Environmental problem caused by carbon emission is of widespread concern. Involving CO2 as C1 resource into chemical synthesis is one of the most attractive ways for carbon recycling. Herein, the first example of host-guest composites featuring metal-organic framework (MOF)-encapsulated binuclear N-heterocyclic carbene (NHC) complex, Co2 @MIL101, was developed with the molecularly dispersed [Co(IPr)Br]2 (µ-Br)2 (Co2 ) loading in the cage of MIL-101(Cr) via a "ligand-in-dimer-trap" strategy, which was comprehensively investigated through various techniques including synchrotron X-ray absorption, electron microscopy, X-ray diffraction, solid-state nuclear magnetic resonance spectroscopy, and others. The noble-metal-free double-sites catalyst Co2 @MIL101 exhibited promising stability, activity, efficiency, reusability, and substrate adaptability for converting CO2 into various formamides with amines and hydrosilanes and achieved the best performance for one of the most useful formamides, N-methyl-N-phenylformamide (MFA), among the recyclable catalysts at ambient conditions, providing a reliable approach to successfully unify the advantages of both homo- and heterogeneous catalysts. Density functional theory calculations were applied to illustrate the superior activity of the binuclear NHC complex center as double-sites catalyst toward the activation of CO2 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA