Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Annu Rev Microbiol ; 76: 413-433, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35655342

RESUMEN

Microbial communities enmeshed in a matrix of macromolecules, termed as biofilms, are the natural setting of bacteria. Exopolysaccharide is a critical matrix component of biofilms. Here, we focus on biofilm matrix exopolysaccharides in Pseudomonas aeruginosa. This opportunistic pathogen can adapt to a wide range of environments and can form biofilms or aggregates in a variety of surfaces or environments, such as the lungs of people with cystic fibrosis, catheters, wounds, and contact lenses. The ability to synthesize multiple exopolysaccharides is one of the advantages that facilitate bacterial survival in different environments. P. aeruginosa can produce several exopolysaccharides, including alginate, Psl, Pel, and lipopolysaccharide. In this review, we highlight the roles of each exopolysaccharide in P. aeruginosa biofilm development and how bacteria coordinate the biosynthesis of multiple exopolysaccharides and bacterial motility. In addition, we present advances in antibiofilm strategies targeting matrix exopolysaccharides, with a focus on glycoside hydrolases.


Asunto(s)
Polisacáridos Bacterianos , Pseudomonas aeruginosa , Biopelículas , Humanos , Pseudomonas aeruginosa/metabolismo
2.
Appl Environ Microbiol ; 89(2): e0189122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36744921

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa is an environmental microorganism and is a model organism for biofilm research. Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that plays critical roles in biofilm formation. P. aeruginosa contains approximately 40 genes that encode enzymes that participate in the metabolism of c-di-GMP (biosynthesis or degradation), yet it lacks tools that aid investigation of the systematic expression pattern of those genes. In this study, we constructed a promoter-gfp fusion reporter library that consists of 41 reporter plasmids. Each plasmid contains a promoter of corresponding c-di-GMP metabolism-related (CMR) genes from P. aeruginosa reference strain PAO1; thus, each promoter-gfp fusion reporter can be used to detect the promoter activity as well as the transcription of corresponding gene. The promoter activity was tested in P. aeruginosa and Escherichia coli. Among the 41 genes, the promoters of 26 genes showed activity in both P. aeruginosa and E. coli. The library was applied to determine the influence of different temperatures, growth media, and subinhibitory concentrations of antibiotics on the transcriptional profile of the 41 CMR genes in P. aeruginosa. The results showed that different growth conditions did affect the transcription of different genes, while the promoter activity of a few genes was kept at the same level under several different growth conditions. In summary, we provide a promoter-gfp fusion reporter library for systematic monitoring or study of the regulation of CMR genes in P. aeruginosa. In addition, the functional promoters can also be used as a biobrick for synthetic biology studies. IMPORTANCE The opportunistic pathogen P. aeruginosa can cause acute and chronic infections in humans, and it is one of the main pathogens in nosocomial infections. Biofilm formation is one of the most important causes for P. aeruginosa persistence in hosts and evasion of immune and antibiotic attacks. c-di-GMP is a critical second messenger to control biofilm formation. In P. aeruginosa reference strain PAO1, 41 genes are predicted to participate in the making and breaking of this dinucleotide. A major missing piece of information in this field is the systematic expression profile of those genes in response to changing environment. Toward this goal, we constructed a promoter-gfp transcriptional fusion reporter library that consists of 41 reporter plasmids, each of which contains a promoter of corresponding c-di-GMP metabolism-related genes in P. aeruginosa. This library provides a helpful tool to understand the complex regulation network related to c-di-GMP and to discover potential therapeutic targets.


Asunto(s)
Proteínas Bacterianas , Pseudomonas aeruginosa , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Regiones Promotoras Genéticas , GMP Cíclico/metabolismo , Biopelículas , Regulación Bacteriana de la Expresión Génica
3.
Environ Microbiol ; 24(3): 1150-1165, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34499799

RESUMEN

Pseudomonas aeruginosa rugose small-colony variants (RSCVs) are frequently isolated from chronic infections, yet, they are rarely reported in environmental isolates. Here, during the comparative genomic analysis of two P. aeruginosa strains isolated from crude oil, we discovered a spontaneous in-frame deletion, wspAΔ280-307 , which led to hyper-biofilm and RSCV phenotypes. WspA is a homologue of methyl-accepting chemotaxis proteins (MCPs) that senses surfaces to regulate biofilm formation by stimulating cyclic-di-guanosine monophosphate (c-di-GMP) synthesis through the Wsp system. However, the methylation sites of WspA have never been identified. In this study, we identified E280 and E294 of WspA as methylation sites. The wspAΔ280-307 mutation enabled the Wsp system to lock into a constitutively active state that is independent of regulation by methylation. The result is an enhanced production of c-di-GMP. Sequence alignment revealed three conserved repeat sequences within the amino acid residues 280-313 (aa280-313) region of WspA homologues, suggesting that a spontaneous deletion within this DNA encoding region was likely a result of intragenic recombination and that similar mutations might occur in several related bacterial genera. Our results provide a plausible explanation for the selection of RSCVs and a mechanism to confer a competitive advantage for P. aeruginosa in a crude-oil environment.


Asunto(s)
Proteínas Bacterianas , Pseudomonas aeruginosa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Mutación , Pseudomonas aeruginosa/metabolismo , Transducción de Señal/genética
4.
Food Microbiol ; 104: 104010, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35287798

RESUMEN

Escherichia coli O157:H7 is one of the most important foodborne pathogens that can persist in leafy green vegetables and subsequently produce biofilms. Biofilm formation is an ongoing concern in the food industry as biofilms are relatively resistant to a variety of antimicrobial treatments. In the present study, we evaluated the combined effects of phage FP43 and mild-heated slightly acidic hypochlorous water (SAHW) in reducing established biofilms on lettuce. Prior to the sequential treatments involving phage-SAHW and SAHW-phage for long-term storage, equal inoculum densities of E. coli O157:H7 and E. coli O91:H- were added on iceberg lettuce surfaces and the lettuce samples were stored at 10 °C for 48 h to allow biofilm formation. The sequential treatment with phage FP43 and SAHW significantly decreased the number of adhered cells, especially the combination of phage FP43 at 25 °C for 2 h and mild-heated SAHW, which considerably eliminated E. coli viable biofilm cells to undetectable levels (>3 log CFU/piece). However, the biofilms were not completely removed, as evidenced via SEM observation. Additionally, sequential treatment with SAHW and phage caused continuous reductions in viable counts, decreasing the viability of E. coli O157:H7 and total E. coli to the lower limit of detection after incubation for 5 d. Meanwhile, bacterial regrowth was observed after treatment with SAHW alone. These results indicated that the combination of phage and SAHW could be considered as a promising strategy to control the formation of E. coli O157:H7 biofilms on lettuce.


Asunto(s)
Bacteriófagos , Escherichia coli O157 , Biopelículas , Recuento de Colonia Microbiana , Microbiología de Alimentos , Calor , Lactuca/microbiología , Agua/farmacología
5.
Environ Microbiol ; 23(2): 572-587, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32162778

RESUMEN

Pseudomonas aeruginosa isolates from cystic fibrosis patients are often mucoid (due to the overexpression of exopolysaccharide alginate) yet lost motility. It remains unclear about how P. aeruginosa coordinately regulates alginate production and the type IV pili-driven twitching motility. Here we showed that sigma 22 factor (AlgT/U), an activator of alginate biosynthesis, repressed twitching motility by inhibiting the expression of pilin (PilA) through the intermediate transcriptional regulator AmrZ, which directly bound to the promoter region of pilA in both mucoid strain FRD1 and non-mucoid strain PAO1. Four conserved AmrZ-binding sites were found in pilA promoters among 10 P. aeruginosa strains although their entire pilA promoters had low identity. AmrZ has been reported to be essential for twitching in PAO1. We found that AmrZ was also required for twitching in mucoid FRD1, yet a high level of AmrZ inhibited twitching motility. This result was consistent with the phenomenon that twitching is frequently repressed in mucoid strains, in which the expression of AmrZ was highly activated by AlgT. Additionally, AlgT also inhibited the transcription of pilMNOP operon, which is involved in efficient pilus assembly. Our data elucidated a mechanism for how AlgT and AmrZ coordinately controlled twitching motility in P. aeruginosa.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/metabolismo , Factor sigma/metabolismo , Factores de Transcripción/metabolismo , Alginatos/metabolismo , Proteínas Bacterianas/genética , Fibrosis Quística/microbiología , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Humanos , Operón , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/genética , Factor sigma/genética , Factores de Transcripción/genética
6.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466613

RESUMEN

Hospital-acquired infection is a great challenge for clinical treatment due to pathogens' biofilm formation and their antibiotic resistance. Here, we investigate the effect of antiseptic agent polyhexamethylene biguanide (PHMB) and undecylenamidopropyl betaine (UB) against biofilms of four pathogens that are often found in hospitals, including Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli, Gram-positive bacteria Staphylococcus aureus, and pathogenic fungus, Candida albicans. We show that 0.02% PHMB, which is 10-fold lower than the concentration of commercial products, has a strong inhibitory effect on the growth, initial attachment, and biofilm formation of all tested pathogens. PHMB can also disrupt the preformed biofilms of these pathogens. In contrast, 0.1% UB exhibits a mild inhibitory effect on biofilm formation of the four pathogens. This concentration inhibits the growth of S. aureus and C. albicans yet has no growth effect on P. aeruginosa or E. coli. UB only slightly enhances the anti-biofilm efficacy of PHMB on P. aeruginosa biofilms. However, pretreatment with PslG, a glycosyl hydrolase that can efficiently inhibit and disrupt P. aeruginosa biofilm, highly enhances the clearance effect of PHMB on P. aeruginosa biofilms. Meanwhile, PslG can also disassemble the preformed biofilms of the other three pathogens within 30 min to a similar extent as UB treatment for 24 h.


Asunto(s)
Betaína/farmacología , Biguanidas/farmacología , Biopelículas/efectos de los fármacos , Desinfectantes/farmacología , Glicósido Hidrolasas/farmacología , Pseudomonas aeruginosa/enzimología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/prevención & control , Betaína/análogos & derivados , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Candidiasis/prevención & control , Infección Hospitalaria/prevención & control , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , Ácidos Undecilénicos/química , Ácidos Undecilénicos/farmacología
7.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31444209

RESUMEN

Cyclic diguanosine monophosphate (c-di-GMP) is an important second messenger involved in bacterial switching from motile to sessile lifestyles. In the opportunistic pathogen Pseudomonas aeruginosa, at least 40 genes are predicted to encode proteins for the making and breaking of this signal molecule. However, there is still paucity of information concerning the systemic expression pattern of these genes and the functions of uncharacterized genes. In this study, we analyzed the phylogenetic distribution of genes from P. aeruginosa that were predicted to have a GGDEF domain and found five genes (PA5487, PA0285, PA0290, PA4367, and PA5017) with highly conserved distribution across 52 public complete pseudomonad genomes. PA5487 was further characterized as a typical diguanylate cyclase (DGC) and was named dgcH A systemic analysis of the gene expression data revealed that the expression of dgcH is highly invariable and that dgcH probably functions as a conserved gene to maintain the basal level of c-di-GMP, as reinforced by gene expression analyses. The other four conserved genes also had an expression pattern similar to that of dgcH The functional analysis suggested that PA0290 encoded a DGC, while the others functioned as phosphodiesterases (PDEs). Our data revealed that there are five DGC and PDE genes that maintain the basal level of c-di-GMP in P. aeruginosaIMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen that can cause infections in animals, humans, and plants. The formation of biofilms by P. aeruginosa is the central mode of action to persist in hosts and evade immune and antibiotic attacks. Cyclic-di-GMP (c-di-GMP) is an important second messenger involved in the regulation of biofilm formation. In P. aeruginosa PAO1 strain, there are around 40 genes that encode enzymes for making and breaking this dinucleotide. A major missing piece of information in this field is the phylogeny and expression profile of those genes. Here, we took a systemic approach to investigate this mystery. We found that among 40 c-di-GMP metabolizing genes, 5 have well-conserved phylogenetic distribution and invariable expression profiles, suggesting that there are enzymes required for the basal level of c-di-GMP in P. aeruginosa This study thus provides putative therapeutic targets against P. aeruginosa infections.


Asunto(s)
GMP Cíclico/análogos & derivados , GMP Cíclico/clasificación , GMP Cíclico/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Filogenia , Pseudomonas aeruginosa/metabolismo , Transcriptoma , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Genoma Bacteriano , Metaanálisis como Asunto , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Virulencia
8.
Appl Microbiol Biotechnol ; 103(3): 1535-1544, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30523372

RESUMEN

Bioelectrical nanowires as ecomaterials have great potential on environmental applications. A wide range of bacteria can express type IV pili (T4P), which are long protein fibers assembled from PilA. The T4P of Geobacter sulfurreducens are well known as "microbial nanowires," yet T4P of Pseudomonas aeruginosa (PaT4P) was believed to be poorly conductive. P. aeruginosa is an aerobic and electrochemically active bacterium. Its T4P have been known to be responsible for surface attachment, twitching motility and biofilm formation. Here, we show that PaT4P can be highly conductive while assembled by a truncated P. aeruginosa PilA (PaPilA) containing only N-terminus 61 amino acids. Furthermore, increasing the number of aromatic amino acids in the PaPilA1-61 significantly enhances the conductivity of pili and the bioelectricity output of P. aeruginosa in microbial fuel cell system, suggesting a potential application of PaT4P as a conductive nanomaterial. The N-terminal region of PilA from diverse eubacteria is highly conserved, implying a general way to synthesize highly conductive microbial nanowires and to increase the bioelectricity output of microbial fuel cell.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Conductividad Eléctrica , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Nanocables , Pseudomonas aeruginosa/metabolismo , Aminoácidos Aromáticos/análisis , Proteínas Fimbrias/biosíntesis
9.
Small ; 14(22): e1800658, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29717806

RESUMEN

Bacterial biofilms play essential roles in biogeochemical cycling, degradation of environmental pollutants, infection diseases, and maintenance of host health. The lack of quantitative methods for growing and characterizing biofilms remains a major challenge in understanding biofilm development. In this study, a dynamic sessile-droplet habitat is introduced, a simple method which cultivates biofilms on micropatterns with diameters of tens to hundreds of micrometers in a microfluidic channel. Nanoliter plugs are utilized, spaced by immiscible carrier oil to initiate and support the growth of an array of biofilms, anchored on and spatially confined to the micropatterns arranged on the bottom surface of the microchannel, while planktonic or dispersal cells are flushed away by shear force of aqueous plugs. The performance of the aforementioned method of cultivating biofilms is demonstrated by Pseudomonas aeruginosa PAO1 and its derived mutants, and quantitative antimicrobial susceptibility testing of PAO1 biofilms. This method could significantly eliminate corner effects, avoid microchannel clogging, and constrain the growth of biofilms for long-term observations. The controllable sessile droplet-based biofilm cultivation presented in this study should shed light on more quantitative and long-term studies of biofilms, and open new avenues for investigation of biofilm attachment, growth, expansion, and eradication.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Microfluídica/métodos , Pseudomonas aeruginosa/fisiología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Flagelos/efectos de los fármacos , Flagelos/metabolismo , Hidrodinámica , Pruebas de Sensibilidad Microbiana , Mutación/genética
10.
Appl Environ Microbiol ; 84(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29728385

RESUMEN

PslG attracted a lot of attention recently due to its great potential abilities in inhibiting biofilms of Pseudomonas aeruginosa However, how PslG affects biofilm development still remains largely unexplored. Here, we focused on the surface motility of bacterial cells, which is critical for biofilm development. We studied the effects of PslG on bacterial surface movement in early biofilm development at a single-cell resolution by using a high-throughput bacterial tracking technique. The results showed that compared with no exogenous PslG addition, when PslG was added to the medium, bacterial surface movement was significantly (4 to 5 times) faster and proceeded in a more random way with no clear preferred direction. A further study revealed that the fraction of walking mode increased when PslG was added, which then resulted in an elevated average speed. The differences of motility due to PslG addition led to a clear distinction in patterns of bacterial surface movement and retarded microcolony formation greatly. Our results provide insight into developing new PslG-based biofilm control techniques.IMPORTANCE Biofilms of Pseudomonas aeruginosa are a major cause for hospital-acquired infections. They are notoriously difficult to eradicate and pose serious health hazards to human society. So, finding new ways to control biofilms is urgently needed. Recent work on PslG showed that PslG might be a good candidate for inhibiting/disassembling biofilms of Pseudomonas aeruginosa through Psl-based regulation. However, to fully explore PslG functions in biofilm control, a better understanding of PslG-Psl interactions is needed. Toward this end, we examined the effects of PslG on the surface movement of Pseudomonas aeruginosa in this work. The significance of our work is in greatly enhancing our understanding of the inhibiting mechanism of PslG on biofilms by providing a detailed picture of bacterial surface movement at a single-cell level, which will allow a full understanding of PslG abilities in biofilm control and thus present potential applications in biomedical fields.


Asunto(s)
Biopelículas/efectos de los fármacos , Glicósido Hidrolasas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/farmacología , Biopelículas/crecimiento & desarrollo , Movimiento/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/fisiología , Propiedades de Superficie/efectos de los fármacos
11.
Environ Microbiol ; 18(10): 3440-3452, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26940526

RESUMEN

Cyclic diguanosine monophosphate (c-di-GMP) is one of the most important bacterial second messengers that controls many bacterial cellular functions including lifestyle switch between plankton and biofilm. Surface attachment defective (SadC) is a diguanylate cyclase (DGC) involved in the biosynthesis of c-di-GMP in Pseudomonas aeruginosa, an opportunistic pathogen that can cause diverse infections. Here we report the crystal structure of GGDEF domain from SadC and the critical role of the trans-membrane (TM) domain of SadC with regard to biofilm formation, exopolysaccharide production and motility. We showed that over-expression of SadC in P. aeruginosa PAO1 totally inhibited swimming motility and significantly enhanced the production of exopolysaccharide Psl. SadC lacking TM domains (SadC300-487 ) could not localize on cytoplasmic membrane and form cluster, lost the ability to inhibit the swimming and twitching motility, and showed the attenuated activity to promote Psl production despite that SadC300-487 was able to catalyze the synthesize of c-di-GMP in vitro and in vivo. The GGDEF domain of SadC has a typical GGDEF structure and the α-helix connected the TM domains with SadC GGDEF domain is essential for SadC to form DGC oligomers. Our data imply that membrane association of SadC promotes its DGC activity by affecting the formation of active DGC oligomers.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Polisacáridos Bacterianos/biosíntesis , Pseudomonas aeruginosa/enzimología , Proteínas Bacterianas/genética , Membrana Celular/enzimología , Membrana Celular/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Liasas de Fósforo-Oxígeno/genética , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología
12.
Appl Environ Microbiol ; 82(21): 6403-6413, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27565622

RESUMEN

Exopolysaccharide Psl is a critical biofilm matrix component in Pseudomonas aeruginosa, which forms a fiber-like matrix to enmesh bacterial communities. Iron is important for P. aeruginosa biofilm development, yet it is not clearly understood how iron contributes to biofilm development. Here, we showed that iron promoted biofilm formation via elevating Psl production in P. aeruginosa The high level of iron stimulated the synthesis of Psl by reducing rhamnolipid biosynthesis and inhibiting the expression of AmrZ, a repressor of psl genes. Iron-stimulated Psl biosynthesis and biofilm formation held true in mucoid P. aeruginosa strains. Subsequent experiments indicated that iron bound with Psl in vitro and in biofilms, which suggested that Psl fibers functioned as an iron storage channel in P. aeruginosa biofilms. Moreover, among three matrix exopolysaccharides of P. aeruginosa, Psl is the only exopolysaccharide that can bind with both ferrous and ferric ion, yet with higher affinity for ferrous iron. Our data suggest a survival strategy of P. aeruginosa that uses exopolysaccharide to sequester and store iron to stimulate Psl-dependent biofilm formation. IMPORTANCE: Pseudomonas aeruginosa is an environmental microorganism which is also an opportunistic pathogen that can cause severe infections in immunocompromised individuals. It is the predominant airway pathogen causing morbidity and mortality in individuals affected by the genetic disease cystic fibrosis (CF). Increased airway iron and biofilm formation have been proposed to be the potential factors involved in the persistence of P. aeruginosa in CF patients. Here, we showed that a high level of iron enhanced the production of the key biofilm matrix exopolysaccharide Psl to stimulate Psl-dependent biofilm formation. Our results not only make the link between biofilm formation and iron concentration in CF, but also could guide the administration or use of iron chelators to interfere with biofilm formation in P. aeruginosa in CF patients. Furthermore, our data also imply a survival strategy of P. aeruginosa under high-iron environmental conditions.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Hierro/metabolismo , Polisacáridos Bacterianos/metabolismo , Pseudomonas aeruginosa/fisiología , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Fibrosis Quística/microbiología , Fibrosis Quística/terapia , Regulación Bacteriana de la Expresión Génica , Glucolípidos/biosíntesis , Glucolípidos/metabolismo , Humanos , Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Mutación , Pseudomonas aeruginosa/efectos de los fármacos
13.
Appl Environ Microbiol ; 80(21): 6724-32, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25172852

RESUMEN

Biofilm formation is a complex process in which many factors are involved. Bacterial swarming motility and exopolysaccharides both contribute to biofilm formation, yet it is unclear how bacteria coordinate swarming motility and exopolysaccharide production. Psl and Pel are two key biofilm matrix exopolysaccharides in Pseudomonas aeruginosa. This opportunistic pathogen has three types of motility, swimming, twitching, and swarming. In this study, we found that elevated Psl and/or Pel production reduced the swarming motility of P. aeruginosa but had little effect on swimming and twitching. The reduction was due to decreased rhamnolipid production with no relation to the transcription of rhlAB, two key genes involved in the biosynthesis of rhamnolipids. Rhamnolipid-negative rhlR and rhlAB mutants synthesized more Psl, whereas exopolysaccharide-deficient strains exhibited a hyperswarming phenotype. These results suggest that competition for common sugar precursors catalyzed by AlgC could be a tactic for P. aeruginosa to balance the synthesis of exopolysaccharides and rhamnolipids and to control bacterial motility and biofilm formation inversely because the biosynthesis of rhamnolipids, Psl, and Pel requires AlgC to provide the sugar precursors and an additional algC gene enhances the biosynthesis of Psl and rhamnolipids. In addition, our data indicate that the increase in RhlI/RhlR expression attenuated Psl production. This implied that the quorum-sensing signals could regulate exopolysaccharide biosynthesis indirectly in bacterial communities. In summary, this study represents a mechanism that bacteria utilize to coordinate swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production, which is critical for biofilm formation and bacterial survival in the environment.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Glucolípidos/metabolismo , Locomoción , Polisacáridos Bacterianos/metabolismo , Pseudomonas aeruginosa/fisiología , Tensoactivos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo
14.
Environ Microbiol ; 15(8): 2238-53, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23425591

RESUMEN

Bacterial motilities participate in biofilm development. However, it is unknown how/if bacterial motility affects formation of the biofilm matrix. Psl polysaccharide is a key biofilm matrix component of Pseudomonas aeruginosa. Here we report that type IV pili (T4P)-mediated bacterial migration leads to the formation of a fibre-like Psl matrix. Deletion of T4P in wild type and flagella-deficient strains results in loss of the Psl-fibres and reduction of biofilm biomass in flow cell biofilms as well as pellicles at air-liquid interface. Bacteria lacking T4P-driven twitching motility including those that still express surface T4P are unable to form the Psl-fibres. Formation of a Psl-fibre matrix is critical for efficient biofilm formation, yet does not require flagella and polysaccharide Pel or alginate. The Psl-fibres are likely formed by Psl released from bacteria during T4P-mediated migration, a strategy similar to spider web formation. Starvation can couple Psl release and T4P-driven twitching motility. Furthermore, a radial-pattern Psl-fibre matrix is present in the middle of biofilms, a nutrient-deprived region. These imply a plausible model for how bacteria respond to nutrient-limited local environment to build a polysaccharide-fibre matrix by T4P-dependent bacterial migration strategy. This strategy may have general significance for bacterial survival in natural and clinical settings.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Microbiología Ambiental , Polisacáridos Bacterianos/metabolismo , Pseudomonas aeruginosa/fisiología , Alginatos/metabolismo , Animales , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/metabolismo , Polisacáridos Bacterianos/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Eliminación de Secuencia
15.
Int J Mol Sci ; 14(10): 20983-1005, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24145749

RESUMEN

Biofilms are communities of microorganisms embedded in extracellular polymeric substances (EPS) matrix. Bacteria in biofilms demonstrate distinct features from their free-living planktonic counterparts, such as different physiology and high resistance to immune system and antibiotics that render biofilm a source of chronic and persistent infections. A deeper understanding of biofilms will ultimately provide insights into the development of alternative treatment for biofilm infections. The opportunistic pathogen Pseudomonas aeruginosa, a model bacterium for biofilm research, is notorious for its ability to cause chronic infections by its high level of drug resistance involving the formation of biofilms. In this review, we summarize recent advances in biofilm formation, focusing on the biofilm matrix and its regulation in P. aeruginosa, aiming to provide resources for the understanding and control of bacterial biofilms.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/crecimiento & desarrollo , Animales
16.
Biofilm ; 6: 100155, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37928620

RESUMEN

Biofilms are complex microbial communities embedded in extracellular matrix. Pathogens within the biofilm become more resistant to the antibiotics than planktonic counterparts. Novel strategies are required to encounter biofilms. Exopolysaccharides are one of the major components of biofilm matrix and play a vital role in biofilm architecture. In previous studies, a glycosyl hydrolase, PslGPA, from Pseudomonas aeruginosa was found to be able to inhibit biofilm formation by disintegrating exopolysaccharide in biofilms. Here, we investigate the potential spectrum of PslG homologous protein with anti-biofilm activity. One glycosyl hydrolase from Pseudomonas fluorescens, PslGPF, exhibits anti-biofilm activities and the key catalytic residues of PslGPF are conserved with those of PslGPA. PslGPF at concentrations as low as 50 nM efficiently inhibits the biofilm formation of P. aeruginosa and disassemble its preformed biofilm. Furthermore, PslGPF exhibits anti-biofilm activity on a series of Pseudomonads, including P. fluorescens, Pseudomonas stutzeri and Pseudomonas syringae pv. phaseolicola. PslGPF stays active under various temperatures. Our findings suggest that P. fluorescens glycosyl hydrolase PslGPF has potential to be a broad spectrum inhibitor on biofilm formation of a wide range of Pseudomonads.

17.
mLife ; 2(3): 283-294, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38817812

RESUMEN

Antibiotic resistance or tolerance of pathogens is one of the most serious global public health threats. Bacteria in biofilms show extreme tolerance to almost all antibiotic classes. Thus, use of antibiofilm drugs without bacterial-killing effects is one of the strategies to combat antibiotic tolerance. In this study, we discovered a coumarin-chalcone conjugate C9, which can inhibit the biofilm formation of three common pathogens that cause nosocomial infections, namely, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, with the best antibiofilm activity against P. aeruginosa. Further investigations indicate that C9 decreases the synthesis of the key biofilm matrix exopolysaccharide Psl and bacterial second messenger cyclic-di-GMP. Meanwhile, C9 can interfere with the regulation of the quorum sensing (QS) system to reduce the virulence of P. aeruginosa. C9 treatment enhances the sensitivity of biofilm to several antibiotics and reduces the survival rate of P. aeruginosa under starvation or oxidative stress conditions, indicating its excellent potential for use as an antibiofilm-forming and anti-QS drug.

18.
mLife ; 2(1): 28-42, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38818333

RESUMEN

Pseudomonas aeruginosa is one of the leading nosocomial pathogens that causes both severe acute and chronic infections. The strong capacity of P. aeruginosa to form biofilms can dramatically increase its antibiotic resistance and lead to treatment failure. The biofilm resident bacterial cells display distinct gene expression profiles and phenotypes compared to their free-living counterparts. Elucidating the genetic determinants of biofilm formation is crucial for the development of antibiofilm drugs. In this study, a high-throughput transposon-insertion site sequencing (Tn-seq) approach was employed to identify novel P. aeruginosa biofilm genetic determinants. When analyzing the novel biofilm regulatory genes, we found that the cell division factor ZapE (PA4438) controls the P. aeruginosa pqs quorum sensing system. The ∆zapE mutant lost fitness against the wild-type PAO1 strain in biofilms and its production of 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) had been reduced. Further biochemical analysis showed that ZapE interacts with PqsH, which encodes the synthase that converts 2-heptyl-4-quinolone (HHQ) to PQS. In addition, site-directed mutagenesis of the ATPase active site of ZapE (K72A) abolished the positive regulation of ZapE on PQS signaling. As ZapE is highly conserved among the Pseudomonas group, our study suggests that it is a potential drug target for the control of Pseudomonas infections.

19.
Bioelectrochemistry ; 141: 107849, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34098461

RESUMEN

Focusing the marine euphotic zone, which is the pivotal region for interaction of solar light-mineral-microorganism and the elements cycle, we have conducted the research on the mechanism of semiconducting minerals promoting extracellular electron transfer with microorganisms in depth. Therein, anatase which is one of the most representative semiconducting minerals in marine euphotic zone was selected. The mineralogical characterization of anatase was identified by ESEM, AFM, EDS, Raman, XRD, and its semiconducting characteristics was determined by UV-Vis and Mott-Schottky plots. Determined by the electrochemical measurement of I-t curves, the photocurrent density of anatase was more prominent than dark current density. Pseudomonas aeruginosa PAO1 was widely distributed in the euphotic zone, and its mutants of operons deficient in biosynthesis pyocyanin (Δphz1Δphz2) and pili deficient (ΔpilA) were employed in this study. I-t curves indicated that both direct and indirect extracellular electron transfer processes occurred between anatase and PAO1. The indirect electron transfer depending on pyocyanin secreted by PAO1 was the main electron transfer mode. This work demonstrated the light-driven extracellular electron transfer and further revealed the photo-catalyzed mechanisms between anatase and PAO1 in marine euphotic zone.


Asunto(s)
Pseudomonas aeruginosa/metabolismo , Titanio/metabolismo , Proteínas Bacterianas/metabolismo , Transporte de Electrón , Microscopía Electrónica de Rastreo , Análisis Espectral/métodos
20.
Biotechnol Adv ; 53: 107862, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34718136

RESUMEN

One of the hallmarks of the environmental bacterium Pseudomonas aeruginosa is its excellent ecological flexibility, which can thrive in diverse ecological niches. In different ecosystems, P. aeruginosa may use different strategies to survive, such as forming biofilms in crude oil environment, converting to mucoid phenotype in the cystic fibrosis (CF) lung, or becoming persisters when treated with antibiotics. Rugose small colony variants (RSCVs) are the adaptive mutants of P. aeruginosa, which can be frequently isolated from chronic infections. During the past years, there has been a renewed interest in using P. aeruginosa as a model organism to investigate the RSCVs formation, persistence and pathogenesis, as RSCVs represent a hyper-biofilm formation, high adaptability, high-tolerance sub-population in biofilms. This review will briefly summarize recent advances regarding the phenotypic, genetic and host interaction associated with RSCVs, with an emphasis on P. aeruginosa. Meanwhile, some non-pathogenic bacteria such as Pseudomonas fluorescence, Pseudomonas putida and Bacillus subtilis will be also included. Remarkable emphasis is given on intrinsic functions of such hyper-biofilm formation characteristic as well as its potential applications in several biocatalytic transformations including wastewater treatment, microbial fermentation, and plastic degradation. Hopefully, this review will attract the interest of researchers in various fields and shape future research focused not only on evolutionary biology but also on biotechnological applications related to RSCVs.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Biopelículas , Ecosistema , Humanos , Infección Persistente , Pseudomonas aeruginosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA