RESUMEN
A novel actinobacterium, strain ZYX-F-186T, was isolated from marine sediment sampled on Yongxing Island, Hainan Province, PR China. Based on the results of 16S rRNA gene sequence analysis, strain ZYX-F-186T belongs to the genus Phytohabitans, with high similarity to Phytohabitans kaempferiae KK1-3T (98.3â%), Phytohabitans rumicis K11-0047T (98.1â%), Phytohabitans flavus K09-0627T (98.1â%), Phytohabitans houttuyneae K11-0057T (97.9â%), Phytohabitans suffuscus K07-0523T (97.7â%), and Phytohabitans aurantiacus RD004123T (97.7â%). Phylogenetic analysis of 16S rRNA gene sequences showed that the strain formed a single subclade in the genus Phytohabitans. The novel isolate contained meso-diaminopimelic acid, d-glutamic acid, glycine, d-alanine, and l-lysine in the cell wall. The whole-cell sugars were xylose, arabinose, ribose, and rhamnose. The predominant menaquinones were MK-9(H8), MK-9(H6), and MK-9(H4). The characteristic phospholipids were phosphatidylethanolamine, phosphatidylinositol, phosphatidylmethylethanolamine, phosphatidylglycerol, and an unknown phospholipid. The major fatty acids (>5â%) were iso-C16â:â0, anteiso-C17â:â0, and iso-C18â:â0. Genome sequencing showed a DNA G+C content of 71.9âmol%. Low average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values demonstrated that strain ZYX-F-186T could be readily distinguished from its closely related species. Based on its phylogenetic, chemotaxonomic, and physiological characteristics, strain ZYX-F-186T represents a novel species of the genus Phytohabitans, for which the name Phytohabitans maris sp. nov. is proposed. The type strain is ZYX-F-186T (=CGMCC 4.8025T=CCTCC AA 2023025T=JCM 36507T).
Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , China , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Vitamina K 2/química , Hibridación de Ácido Nucleico , Pared Celular/químicaRESUMEN
Glutathione (GSH) exhibits considerable potential in the cosmetic industry for reducing intracellular tyrosinase activity and inhibiting melanin synthesis. However, its efficacy is hindered by limited permeability, restricting its ability to reach the basal layer of the skin where melanin production occurs. The transdermal enhancer peptide TD1 has emerged as a promising strategy to facilitate the transdermal transfer of proteins or peptides by creating intercellular gaps in keratinocytes, providing access to the basal layer. The primary objective of this study is to enhance the transdermal absorption capacity of GSH while augmenting its inhibitory effect on melanin. Two coupling structures were designed for investigation: linear (TD1-linker-GSH) and branched (TD1-GSH). The study examined the impact of the peptide skeleton on melanin inhibition ability. Our findings revealed that the linear structure not only inhibited synthetic melanin production in B16F10 cells through a direct pathway but also through a paracrine pathway, demonstrating a significant tyrosinase inhibition of nearly 70 %, attributed to the paracrine effect of human keratinocyte HaCaT. In pigmentation models of guinea pigs and zebrafish, the application of TD1-linker-GSH significantly reduced pigmentation. Notably, electric two-photon microscopy demonstrated that TD1-linker-GSH exhibited significant transdermal ability, penetrating 158.67 ± 9.28 µm into the skin of living guinea pigs. Molecular docking analysis of the binding activity with tyrosinase revealed that both TD1-linker-GSH and TD1-GSH occupy the same active pocket, with TD1-linker-GSH binding more tightly to tyrosinase. These results provide a potential foundation for therapeutic approaches aimed at enriched pigmentation and advance our understanding of the mechanisms underlying melanogenesis inhibition.
Asunto(s)
Administración Cutánea , Glutatión , Melaninas , Monofenol Monooxigenasa , Pez Cebra , Melaninas/metabolismo , Animales , Humanos , Cobayas , Glutatión/metabolismo , Glutatión/química , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Péptidos/administración & dosificación , Ratones , Estructura Molecular , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/administración & dosificación , MelanogénesisRESUMEN
Seven new indole-diterpenoids, penpaxilloids A-E (1-5), 7-methoxypaxilline-13-ene (6), and 10-hydroxy-paspaline (7), along with 20 known ones (8-27), were isolated from the marine-derived fungus Penicillium sp. ZYX-Z-143. Among them, compound 1 was a spiro indole-diterpenoid bearing a 2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one motif. Compound 2 was characterized by a unique heptacyclic system featuring a rare 3,6,8-trioxabicyclo[3.2.1]octane unit. The structures of the new compounds were established by extensive spectroscopic analyses, NMR calculations coupled with the DP4 + analysis, and ECD calculations. The plausible biogenetic pathway of two unprecedented indole diterpenoids, penpaxilloids A and B (1 and 2), was postulated. Compound 1 acted as a noncompetitive inhibitor against protein tyrosine phosphatase 1B (PTP1B) with IC50 value of 8.60 ± 0.53 µM. Compound 17 showed significant α-glucosidase inhibitory activity with IC50 value of 19.96 ± 0.32 µM. Moreover, compounds 4, 8, and 22 potently suppressed nitric oxide production on lipopolysaccharide-stimulated RAW264.7 macrophages.
Asunto(s)
Diterpenos , Penicillium , Diterpenos/química , Antiinflamatorios/química , Macrófagos , Indoles/química , Penicillium/química , Estructura MolecularRESUMEN
Five new cytochalasins, diaporchalasins A-E (1-5), together with 14 known congeners (6-19) were isolated from the endophytic fungus Diaporthe sp. BMX12, which was isolated from the branches of Aquilaria sinensis. The structures of the new compounds were elucidated by extensive spectroscopic analyses including high-resolution electron spray ionization mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance (NMR). Their absolute configurations were assigned by theoretical electronic circular dichroism (ECD) calculations. Compounds 11 and 12 featuring a keto carbonyl at C-21 displayed cytotoxicity toward K562, BEL-7402, SGC-7901, A549, and HeLa cell lines with IC50 values ranging from 4.4 to 47.4â µM.
Asunto(s)
Ascomicetos , Citocalasinas , Ensayos de Selección de Medicamentos Antitumorales , Thymelaeaceae , Citocalasinas/química , Citocalasinas/farmacología , Citocalasinas/aislamiento & purificación , Humanos , Thymelaeaceae/química , Thymelaeaceae/microbiología , Ascomicetos/química , Ascomicetos/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Conformación Molecular , Supervivencia Celular/efectos de los fármacosRESUMEN
Two new indole-diterpenoids, penpaxilloids F and G (1 and 2), along with 11 known analogues (3-13), were isolated from the marine fungus Penicillium sp. ZYX-Z-718. The structures of the new compounds were identified by extensive spectroscopic analyses including HR-ESI-MS, UV, and NMR, as well as theoretical NMR chemical shifts and ECD calculations. Compounds 6 and 10 showed antibacterial activity against Gram-positive bacteria including Staphylococcus aureus, Bacillus subtilis, and MRSA with MIC values ranging from 16.0-32.0â µg/mL.
RESUMEN
Four new isocoumarin derivatives 12-O-acetyl-isocitreoisocoumarinol (1), (+)-(10R)-O-acetyl-diaportinol (2-a), (-)-(10S)-O-acetyl-diaportinol (2-b), peyroisocoumarin E (3) and new stereoconfigurations of three isocoumarin derivatives desmethyldichlorodiaportinol A (4), threo-monochlorodiaportinol A (5-a), erytheo-monochlorodiaportinol A (5-b), together with nine known ones (6-14), were separated from the rice fermentation of endophytic fungus Diaporthe arengae M2 isolated from Camellia oleifera. The structures of new compounds were determined by extensive spectroscopic analyses including nuclear magnetic resonance (NMR) and high resolution electrospray ionization mass spectroscopy (HR-ESI-MS). Compounds 4, 7, 8, 12, 13 exhibited definite inhibition against five strains of bacteria with the MIC values range from 16 µg/mL to 64 µg/mL.
RESUMEN
Two new compounds named 3(S)-hydroxy-1-(2,4,5-trihydroxy-3,6- dimethylphenyl)-hex-4E-en-1-one (1) and acremonilactone (2), together with nine known compounds (3-11), were isolated from the fermentation broth of Acremonium sp. associated with marine sediments collected from South China Sea. NMR and HRESIMS spectroscopic analysis elucidated the structure of two new compounds. Compound 2 had characteristic rotary gate shape skeleton with a six-membered lactone. Compounds 1 and 9 showed DPPH radical scavenging activity with inhibition rates of 96.50 and 85.95% at the concentration of 0.5 mg/ml, respectively. Moreover, compounds 4, 6 and 11 showed definite antibacterial activity against Staphylococcus aureus ATCC 6538.
Asunto(s)
Acremonium , Acremonium/química , Estructura Molecular , Hongos , Staphylococcus aureus , Espectroscopía de Resonancia Magnética , Antibacterianos/químicaRESUMEN
A novel actinobacterium strain (M4I6T) was isolated from marine sediment collected in Megas Gialos, Syros, Greece. On the basis of 16S rRNA gene sequence analysis, strain M4I6T was indicated as belonging to the genus Actinoplanes, with high similarity to 'Actinoplanes solisilvae' LAM7112T (97.9â%), Actinoplanes ferrugineus IFO 15555T (97.6â%), Actinoplanes cibodasensis LIPI11-2-Ac042T (97.2â%) and Actinoplanes bogorensis LIPI11-2-Ac043T (97.2â%). Phylogenetic analysis of the 16S rRNA gene sequence of strain M4I6T showed that the strain formed a stable subclade with 'A. solisilvae' LAM7112T. The cell wall of the novel isolate contained meso-diaminopimelic acid and the whole-cell sugars were xylose, glucose and ribose. The predominant menaquinones were MK-9(H4), MK-9(H2) and MK-9(H8). The phospholipid profile comprised phosphatidylethanolamine, phosphatidylinositol, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol mannosides and an unknown phospholipid. The major fatty acids (>5â%) were anteiso-C16â:â0, iso-C17â:â0, 10-methyl-C16â:â0, C15â:â0, iso-C16â:â0 and C17â:â0. Genome sequencing showed a DNA G+C content of 70.9âmol%. However, the low average nucleotide identity value, digital DNA-DNA hybridization and average amino acid identity values demonstrated that strain M4I6T could be readily distinguished from its closest related species. Based on data from this polyphasic study, strain M4I6T represents a novel species of the genus Actinoplanes, for which the name Actinoplanes maris sp. nov. is proposed. The type strain is M4I6T (=DSM 101017T=CGMCC 4.7854T).
Asunto(s)
Actinoplanes , Micromonosporaceae , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Composición de Base , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Fosfolípidos/química , Fosfatidilinositoles , Sedimentos Geológicos , Vitamina K 2/químicaRESUMEN
A Gram-stain-negative, motile, rod-shaped bacterium, designated strain LAM2020T, was isolated from a sulfonylurea herbicides-degrading bacterial consortium. The optimal temperature and pH for the growth of strain LAM2020T were 30 °C and 7.0, respectively. Strain LAM2020T formed a distinct phylogenetic subclade within the genus Cedecea in the phylogenetic trees built with 16S rRNA gene sequences and shared the highest similarity with Cedecea davisae DSM 4568T (98.4%). The values of digital DNA-DNA hybridization and average nucleotide identity (ANI) based on the genome sequences between LAM2020T and C. davisae DSM 4568T were 22.7% and 80.0%, respectively. It contained 54.0 mol% of G + C in the genomic DNA. The major cellular fatty acids of strain LAM2020T were summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), C16:0 and summed feature 8 (C18:1 ω7c/C18:1 ω6c). The major polar lipids present in strain LAM2020T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and aminophospholipid. The respiratory quinone of strain LAM2020T was ubiquinone-8 and ubiquinone-7. Based on the phenotypic characteristics, chemotaxonomic data and genotypic analyses, strain LAM2020T should be classified as a novel species of genus Cedecea, for which the name Cedecea sulfonylureivorans sp. nov. is proposed. The type strain is LAM2020T (= GDMCC 1.2363T = JCM 34640T).
Asunto(s)
Herbicidas , Ubiquinona , ARN Ribosómico 16S/genética , Filogenia , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Fosfolípidos , Análisis de Secuencia de ADN , Ácidos Grasos , Bacterias/genéticaRESUMEN
A novel Gram-stain positive, aerobic, motile, rod-shaped bacterium, designated strain LAM7116T was isolated from a sulfonylurea herbicides degrading consortium enriched with birch forest soil from Xinjiang. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain LAM7116T was closely related to the members of the genus Microbacterium, with the highest similarity to Microbacterium flavescens DSM 20643T (98.48%) and Microbacterium kitamiense Kitami C2T (98.48%). Strain LAM7116T formed a distinct subclade with M. flavescens DSM 20643T within the genus Microbacterium in the 16S rRNA gene phylogenetic trees. The genomic DNA G + C content of LAM7116T was 69.9 mol%. The digital DNA-DNA hybridization (dDDH) value between strain LAM7116T and M. flavescens DSM 20643T was 27.20%. The average nucleotide identity (ANI) value was 83.96% by comparing the draft genome sequences of strain LAM7116T and M. flavescens DSM 20643T. The major fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C17:0, and iso-C16:0. The respiratory menaquinones of strain LAM7116T were MK-13 and MK-14. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, an unidentified lipid, and an unidentified glycolipid. The peptidoglycan contained the amino acids glycine, lysine, alanine, and glutamic acid. Based on the phenotypic characteristics and genotypic analyses, we consider that strain LAM7116T represents a novel species, for which the name Microbacterium sulfonylureivorans sp. nov. was proposed. The type strain is LAM7116T (= CGMCC 1.16620T = JCM 32823T). Strain LAM7116T secreted auxin IAA and grew well in Ashby nitrogen-free culture medium. Genomic results showed that strain LAM7116T carried the nitrogenase iron protein (nifU and nifR3) gene, which indicated that strain LAM7116T has the potential to fix nitrogen and promote plant growth. At same time, strain LAM7116T can degrade nicosulfuron (a kind of sulfonylurea herbicides) using glucose as carbon source. Microbacterium sulfonylureivorans sp. nov. LAM7116T is a potential candidate for the biofertilizers of organic agriculture areas, and may possess potential to be used in bioremediation of nicosulfuron-contaminated environments.
Asunto(s)
Herbicidas , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos , Microbacterium , Fosfolípidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Eight new phenethoxy derivatives, trichoasperellins A-H (1-8), were isolated from the endophytic fungus Trichoderma asperellum G10 isolated from the medicinal plant Areca catechu L. The structures of these compounds were elucidated from spectroscopic data, J-based configurational analysis, and Mosher's methods. Compounds 1-4 and 6-8 bear one or two multioxidized C7 moieties with the same carbon skeleton. The carbon skeletons of compounds 6-8 are new, all containing three moieties connected via two acetal carbons similar to those of disaccharide glycosides. Compound 4 inhibited nitric oxide production with an IC50 value of 48.3 µM, comparable to that of the positive control indomethacin (IC50, 42.3 µM).
Asunto(s)
Hypocreales , Trichoderma , Antiinflamatorios/química , Antiinflamatorios/farmacología , Areca , Carbono , Estructura Molecular , Trichoderma/químicaRESUMEN
Eight previously undescribed lanostane triterpenoids, ganodeweberiols A â¼ H (1-8), together with eighteen known compounds (9-26), were isolated from the fruiting bodies of Ganoderma weberianum. The structures and absolute configurations of the new compounds were determined by extensive spectroscopic analysis, as well as NMR chemical shifts and electronic circular dichroism (ECD) calculations. Compounds 2, 7, 12, and 14 showed significant α-glucosidase inhibitory activity with IC50 values ranging from 35.3 µM â¼ 223.4 µM compared to the positive control acarbose (IC50, 304.6 µM). Kinetic study indicated that the most potent compound 12 was a mixed type inhibitor for α-glucosidase. Molecular docking simulation revealed the interactions of 12 with α-glucosidase. Additionally, Compounds 3 and 6 inhibited glucagon-induced hepatic glucose production in HepG2 cells with EC50 values of 42.0 and 85.9 µM, respectively. Further study revealed that compounds 3 and 6 inhibited hepatic glucose production by suppression glucagon-induced cAMP accumulation. Moreover, compounds 3 and 26 were active against HeLa cell line with IC50 values of 17.0 and 6.8 µM, respectively.
Asunto(s)
Ascomicetos , Triterpenos , Cuerpos Fructíferos de los Hongos/química , Ganoderma , Glucagón , Glucosa , Células HeLa , Humanos , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Esteroides , Triterpenos/química , alfa-GlucosidasasRESUMEN
Marine fungi can metabolize structurally diverse active components, and have become an important source of drug lead molecules. In the present study, the chemical investigation on the EtOAc extract of the fermentation broth of the marine-derived fungus Trametes sp. ZYX-Z-16 led to the isolation of eight meroterpenoids (1-8), including two undescribed ones, together with ten ergostane steroid analogues (9-18). The structures of two new spiromeroterpenoids, asnovolin H (1) and asnovolin I (2), were determined based on 1D, 2D NMR, and HRESIMS spectroscopic data along with ECD spectra calculations. All compounds were tested for antibacterial and α-glucosidase inhibitory activity. Among them, compound 12 showed definite antibacterial activities against Staphylococcus aureus ATCC 6538 (MIC 32 µg/mL) and Bacillus subtilis ATCC 6633 (MIC 16 µg/mL). In addition, compounds 9 and 10 showed superior inhibitory activity, with IC50 values of 104.1 and 111.3 µM, respectively, to the positive control acarbose (304.6 µM).
Asunto(s)
Staphylococcus aureus , Trametes , Espectroscopía de Resonancia Magnética , Antibacterianos/química , Esteroides/farmacología , Pruebas de Sensibilidad Microbiana , Estructura MolecularRESUMEN
Macrofungus Ganoderma luteomarginatum is one of the main species of Ganoderma fungi distributed in Hainan province of China, the fruiting bodies of which have been widely used in folk as a healthy food to prevent tumors. To explore the potential cytotoxic constituents from G. luteomarginatum, the phytochemical investigation on the ethyl acetate soluble fraction of 95% ethanolic extract from the fruiting bodies of this fungus led to the isolation of twenty-six lanostane triterpenoids (1-26), including three undescribed ones (1-3), together with eight ergostane steroids (27-34). The structures of three new lanostane triterpenoids were elucidated as lanosta-7,9(11)-dien-3ß-acetyloxy-24,25-diol (1), lanosta-7,9(11)-dien-3-oxo-24,26-diol-25-methoxy (2), and lanosta-8,20(22)-dien-3,11,23-trioxo-7ß,15ß-diol-26-oic acid methyl ester (3) by the analysis of 1D, 2D NMR, and HRESIMS spectroscopic data. All isolates were assayed for their cytotoxic activities using three human cancer cell lines (K562, BEL-7402, and SGC-7901) and seven lanostane triterpenoids (1, 2, 7, 13, 18, 22, and 24), and one ergostane steroid (34) showed definite cytotoxicity with IC50 values that ranged from 6.64 to 47.63 µg/mL. Among these cytotoxic lanostane triterpenoids, compounds 2 and 13 showed general cytotoxicity against three human cancer cell lines, while compounds 1 and 18 exhibited significant selective cytotoxicity against K562 cells with IC50 values of 8.59 and 8.82 µg/mL, respectively. Furthermore, the preliminary structure-cytotoxicity relationships was proposed.
Asunto(s)
Antineoplásicos , Ganoderma , Triterpenos , Humanos , Triterpenos/química , Cuerpos Fructíferos de los Hongos/química , Estructura Molecular , Ganoderma/química , Esteroides/química , Antineoplásicos/química , Ésteres/análisis , Extractos Vegetales/análisisRESUMEN
A gram-stain positive, aerobic, motile, rod-shaped bacterium, designated strain LAM7117T, was isolated from a sulfonylurea herbicides degrading consortium enriched with birch forest soil. The optimal temperature and pH for the growth of strain LAM7117T were 35 °C and 7.5, respectively. Strain LAM7117T could grow in the presence of NaCl with concentration up to 9% (w/v). Strain LAM7117T formed a distinct phylogenetic subclade within the genus Arthrobacter in the phylogenetic trees built with 16S rRNA gene sequences and shared the highest similarity with A. crystallopoietes JCM 2522T (97.7%). The values of digital DNA-DNA relatedness and Avery Nucleotide Identity based on the genome sequences between LAM7117T and A. crystallopoietes JCM 2522T were 21.4 and 77.4%, respectively. The genomic DNA G + C content was 65.9 mol%. The major cellular fatty acids were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. The cell wall peptidoglycan contained the amino acids as glycine, lysine, alanine and glutamic acid. The major polar lipids present in strain LAM7117T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidyl inositol, two unidentified glycolipids and one unidentified lipid. The predominant menaquinones of strain LAM7117T were MK-8 and MK-9. Based on the phenotypic characteristics, chemotaxonomic data and genotypic analyses, strain LAM7117T should be classified as a novel species of genus Arthrobacter, for which the name Arthrobacter sulfonylureivorans sp. nov. is proposed. The type strain is LAM7117T (= JCM 32824T = CGMCC 1.16681T).
Asunto(s)
Arthrobacter/clasificación , Filogenia , Microbiología del Suelo , Arthrobacter/genética , Arthrobacter/aislamiento & purificación , Arthrobacter/metabolismo , Composición de Base , Betula , Ácidos Grasos/química , Herbicidas , Peptidoglicano/análisis , ARN Ribosómico 16S/genética , Suelo/química , Especificidad de la Especie , TemperaturaRESUMEN
Strain HNM0947T, representing a novel actinobacterium, was isolated from the coral Galaxea astreata collected from the coast of Wenchang, Hainan, China. The strain was found to have morphological and chemotaxonomic characteristics consistent with the genus Nocardiopsis. The organism formed abundant fragmented substrate mycelia and aerial mycelia which differentiated into non-motile, rod-shaped spores. Whole-cell hydrolysates contained meso-diaminopimelic acid and no diagnostic sugars. The major menaquinones were MK-10(H8), MK-10(H6) and MK-10(H4). The major phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major fatty acids were iso-C16:0, anteiso-C17:0, C18:0, C18:0 10-methyl (TBSA) and anteiso-C15:0. The G+C content was 71.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HNM0947T belonged to the genus Nocardiopsis and shared highest sequence similarity to Nocardiopsis salina YIM 90010T (98.8%), Nocardiopsis xinjiangensis YIM 90004T(98.5%) and Nocardiopsis kunsanensis DSM 44524T (98.3%). The strain HNM0947T was distinguished from its closest type strain by low average nucleotide identity (90.8%) and dDDH values (60.4%) respectively. Based on genotypic, chemotaxonomic and phenotypic characteristics, it was concluded that strain HNM0947T represents a novel species of the genus Nocardiopsis whose name was proposed as Nocardiopsis coralli sp. nov. The type strain was HNM0947T (=CCTCC AA 2020015 T=KCTC 49525 T).
Asunto(s)
Antozoos/microbiología , Nocardiopsis/clasificación , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Nocardiopsis/aislamiento & purificación , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/químicaRESUMEN
A Gram-stain-negative, aerobic, motile, short-rod-shaped bacterium with nicosulfuron-degrading ability, designated strain LAM1902T, was isolated from a microbial consortium enriched with nicosulfuron as a sole nitrogen and energy source. The optimal temperature and pH for growth of strain LAM1902T were 30 °C and pH 6.0, respectively. Strain LAM1902T could grow in the presence of NaCl with concentration up to 4.0â% (w/v). Comparative analysis of 16S rRNA gene sequences revealed that LAM1902T was closely related to the members of the family Pseudomonadaceae to the genus Pseudomonas, with the highest similarity to Pseudomonas nitroreducens DSM 14399T (99.6â%), Pseudomonas nitritireducens WZBFD3-5A2T (99.3â%) and Pseudomonas panipatensis Esp-1T (98.8â%). Multi-locus sequence analysis based on both concatenated sequences of the 16S rRNA gene and three housekeeping genes (gyrB, rpoB and rpoD) further confirmed the intrageneric phylogenetic position of strain LAM1902T. The genomic DNA G+C content of LAM1902T was 64.8 mol%. The low values of in silico DNA-DNA hybridization (less than 43.7â%) and average nucleotide identity (less than 90.9â%) also showed that the strain was distinctly different from known species of the genus Pseudomonas. The major fatty acids were C16â:â0, C17â:â0 cyclo and anteiso C15â:â0. Ubiquinone Q-9 was detected as the predorminant respiratory quinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and aminophospholipid. Based on phylogenetic, phenotypic and chemotaxonomic analyses and genome comparisons, we conclude that strain LAM1902T represents a novel species, for which the name Pseudomonas nicosulfuronedens sp. nov. is proposed. The type strain is LAM1902T (=JCM 33860T=KCTC 72830T).
Asunto(s)
Consorcios Microbianos , Filogenia , Pseudomonas/clasificación , Piridinas/metabolismo , Compuestos de Sulfonilurea/metabolismo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Fosfolípidos/química , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/químicaRESUMEN
Macrofungi Ganoderma is a valuable medicinal fungus resource for human health and longevity in China. In this study, ten undescribed compounds including seven lostane-type triterpenoids, ganodaustralic acids A â¼ G (1-7), one pair of meroterpenoid enantiomers, (-)-6'-O-ethyllingzhiol (8) and (+)-6'-O-ethyllingzhiol (9), and one polyhydroxylated sterol, 3-O-acetyl-fomentarol C (10), together with eight known compounds (11-18), were isolated from the fruiting bodies of Ganoderma australe. The structures of the new compounds were elucidated by extensive spectroscopic analysis as well as NMR and electronic circular dichroism (ECD) calculations. Compounds 4, 8, 9, and 12 showed significant α-glucosidase inhibitory activities with IC50 values in the range of 4.1-11.7 µM, which were superior to that of positive control acarbose (213 µM). Only compound 7 exhibited weak cytotoxicity against SGC-7901 cells.
Asunto(s)
Antineoplásicos/farmacología , Ganoderma/química , Inhibidores de Glicósido Hidrolasas/farmacología , Terpenos/farmacología , alfa-Glucosidasas/metabolismo , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Cuerpos Fructíferos de los Hongos/química , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Humanos , Estructura Molecular , Relación Estructura-Actividad , Terpenos/química , Terpenos/aislamiento & purificaciónRESUMEN
Four new indole-diterpenoids, named penerpenes K-N (1-4), along with twelve known ones (5-16), were isolated from the fermentation broth produced by adding L-tryptophan to the culture medium of the marine-derived fungus Penicillium sp. KFD28. The structures of the new compounds were elucidated extensively by 1D and 2D NMR, HRESIMS data spectroscopic analyses and ECD calculations. Compound 4 represents the second example of paxilline-type indole diterpene bearing a 1,3-dioxepane ring. Three compounds (4, 9, and 15) were cytotoxic to cancer cell lines, of which compound 9 was the most active and showed cytotoxic activity against the human liver cancer cell line BeL-7402 with an IC50 value of 5.3 µM. Moreover, six compounds (5, 7, 10, 12, 14, and 15) showed antibacterial activities against Staphylococcus aureus ATCC 6538 and Bacillus subtilis ATCC 6633.
Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Diterpenos/farmacología , Indoles/farmacología , Penicillium , Animales , Antibacterianos/química , Antineoplásicos/química , Organismos Acuáticos , Línea Celular Tumoral/efectos de los fármacos , Diterpenos/química , Humanos , Indoles/química , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacosRESUMEN
Two new compounds named asperpenes D (1) and E (2) were isolated from the marine-derived fungus Aspergillus sp. SCS-KFD66. Their structures were determined on the basis of spectroscopic methods. Compound 2 represents the first natural product bearing a 2-substituted-5-oxo-4-phenyl-2,5-dihydrofuran-3-carboxylic acid skeleton. All the compounds were tested for enzyme inhibitory activity against AChE and α-glucosidase and DPPH radical scavenging activity, respectively. [Formula: see text].