Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Methods ; 16(22): 3522-3529, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38775028

RESUMEN

To develop a sensitive and simple ampicillin (AMP) sensor for trace antibiotic residue detection, the influencing factors of the modification effect of nanogold-functionalized nucleic acid sequences (Adenine: A, Thymine: T) were comprehensively analyzed in this study, including the modification method, base length and type. It was found that under the same base concentration, longer chains are more likely to reach saturation than shorter chains; and when the base concentration and length are both the same, A exhibits a higher saturation modification level compared to T. Based on these research findings, a highly sensitive fluorescence aptamer sensor for detecting ampicillin was constructed using the optimized functionalized sequence (ployA6-aptamer) and experimental conditions (6 hours binding time between nucleic acid aptamer and complementary strand, pH 7 working solution, 20 minutes detection time) based on the principle of fluorescence resonance energy transfer. The sensor has a detection range of 0.18 ng ml-1 to 3.11 ng ml-1 for ampicillin, with a detection limit of 0.04 ng ml-1. It exhibits significant selectivity and achieves an average recovery rate of 98.71% in tap water and 91.83% in milk. This method can be used not only for residual ampicillin detection, but also for highly sensitive detection of various antibiotics and small biological molecules by replacing the aptamer type. It provides a research basis for the design of highly sensitive fluorescence aptamer sensors and further applications of nanogold@DNA composite structures.


Asunto(s)
Ampicilina , Antibacterianos , Aptámeros de Nucleótidos , Técnicas Biosensibles , Límite de Detección , Leche , Aptámeros de Nucleótidos/química , Ampicilina/análisis , Ampicilina/química , Antibacterianos/análisis , Antibacterianos/química , Leche/química , Técnicas Biosensibles/métodos , Animales , Transferencia Resonante de Energía de Fluorescencia/métodos , Nanopartículas del Metal/química , Oro/química
2.
Heliyon ; 10(1): e23425, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38226264

RESUMEN

Examining the spatiotemporal changes of territorial space is crucial for addressing the conflict between economic-social development and the natural environment and achieving optimal territorial space utilization. However, there is a research gap regarding the spatial characteristics and optimization in the mountain-flatland area. To address this gap, this paper focuses on the urban agglomeration in Central Yunnan (UACY) as a representative mountain-flatland area. A mountain-flatland classification model was established. Based on the evaluation of production- living- ecological functions, the economic models were introduced to measure the balance degree, and further researched the spatiotemporal evolution and coupling coordination characteristics by spatial analysis from 2010 to 2020. The findings indicate the following: (1) The study area exhibited distinct mountain-flatland differentiation, with "western mountainous counties (MCs)/semi-mountainous and semi-flatland counties (SMSFCs), central flatland counties (FCs), and eastern SMSFCs". production function (PF) primarily formed a cluster in the central-northeastern areas of FCs and of SMSFCs, living function (LF) was highly clustered in the central areas of FCs, remained stable, and ecological function (EF) was significantly clustered in the northwestern regions of MCs and of SMSFCs, significantly enhanced in the northeast. (2) The imbalance degree followed the order LF > PF > EF, showing a decreasing trend primarily driven by intra-group imbalances within FCs, SMSFCs, and MCs. The coordinate areas were mainly concentrated in central FCs, and the dysfunctional areas was largely located in MCs and SMSFCs, the degree was improved, especially in northwestern and southeastern MCs and SMSFCs. (3) The study area fell into 18 functional areas, optimized into 13 areas, with recommendations for differentiated development control paths to achieve an optimization of PLEFs. These results provide theoretical references for promoting sustainable utilization of territorial resources and facilitating high-quality regional development in UACY and other parts of the country.

3.
Nat Ecol Evol ; 8(7): 1270-1284, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849504

RESUMEN

Microbial inoculation involves transplanting microorganisms from their natural habitat to new plants or soils to improve plant performance, and it is being increasingly used in agriculture and ecological restoration. However, microbial inoculants can invade and alter the composition of native microbial communities; thus, a comprehensive analysis is urgently needed to understand the overall impact of microbial inoculants on the biomass, diversity, structure and network complexity of native communities. Here we provide a meta-analysis of 335 studies revealing a positive effect of microbial inoculants on soil microbial biomass. This positive effect was weakened by environmental stress and enhanced by the use of fertilizers and native inoculants. Although microbial inoculants did not alter microbial diversity, they induced major changes in the structure and bacterial composition of soil microbial communities, reducing the complexity of bacterial networks and increasing network stability. Finally, higher initial levels of soil nutrients amplified the positive impact of microbial inoculants on fungal biomass, actinobacterial biomass, microbial biomass carbon and microbial biomass nitrogen. Together, our results highlight the positive effects of microbial inoculants on soil microbial biomass, emphasizing the benefits of native inoculants and the important regulatory roles of soil nutrient levels and environmental stress.


Asunto(s)
Biomasa , Microbiota , Microbiología del Suelo , Bacterias/clasificación , Biodiversidad , Inoculantes Agrícolas/fisiología , Suelo/química , Hongos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA