Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nutr J ; 23(1): 8, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195532

RESUMEN

BACKGROUND: Abnormal blood potassium levels are associated with an increased risk of cardiometabolic diseases and mortality in the general population; however, evidence regarding the association between dyskalemia and mortality among patients with cardiovascular disease (CVD) remains inconclusive. This study aimed to evaluate the association of potassium levels with all-cause and cardiovascular mortality among patients with CVD. METHODS: PubMed, Embase, Web of Science, and Cochrane Library databases were searched up to August 2023 to identify relevant cohort studies among patients with CVD, such as myocardial infarction, stroke, and heart failure. Abnormal potassium levels were considered as hypokalemia or hyperkalemia. The primary outcomes were all-cause mortality based on follow-up length (including in-hospital, short-term and long-term mortality) and cardiovascular mortality. The methodological quality of included studies was assessed by using the Newcastle-Ottawa Scale. The pooled relative risks (RRs) and 95% confidence intervals (CIs) were calculated using random-effects models. Restricted cubic splines were applied to explore the dose-response relationship. RESULTS: Thirty-one cohort studies involving 227,645 participants with an average age of 68.3 years were included in the meta-analysis, all of which achieved moderate to high quality. Hyperkalemia was significantly associated with an approximately 3.0-fold increased risk of all-cause in-hospital mortality (RR:2.78,95CI%:1.92,4.03), 1.8-fold of all-cause short-term mortality (RR:1.80, 95CI%:1.44,2.27), 1.3-fold of all-cause long-term mortality (RR:1.33, 95CI%:1.19,1.48) and 1.2-fold of cardiovascular mortality (RR:1.19, 95CI%:1.04,1.36). Similar positive associations were also observed between hypokalemia and risk of all-cause mortality and cardiovascular mortality. The RRs of all-cause in-hospital, short-term, long-term mortality and cardiovascular mortality with hyperkalemia were attenuated to 2.21 (95CI%:1.60,3.06), 1.46(95CI%:1.25,1.71), 1.23 (95CI%:1.09,1.39) and 1.13 (95CI%:1.00,1.27) when treating hypokalemia together with normokalemia as the reference group. A U-shaped association was observed between potassium levels and mortality, with the lowest risk at around 4.2 mmol/L. CONCLUSIONS: Both hypokalemia and hyperkalemia were positively associated with the risk of mortality in patients with CVD. Our results support the importance of potassium homeostasis for improving the CVD management. REGISTRATION: PROSPERO, CRD42022324337.


Asunto(s)
Enfermedades Cardiovasculares , Hiperpotasemia , Hipopotasemia , Humanos , Anciano , Estudios de Cohortes , Potasio
2.
Dis Esophagus ; 37(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38189470

RESUMEN

Herein, we aimed to evaluate the efficacy and safety of camrelizumab combined with docetaxel and carboplatin as a neoadjuvant treatment for locally advanced oesophageal squamous cell carcinoma (OSCC). Fifty-one patients with OSCC, treated from July 2020 to October 2022, were analyzed. Of them, 41 patients underwent surgery 4-8 weeks after undergoing two cycles of camrelizumab (200 mg IV Q3W) combined with docetaxel (75 mg/m2 IV Q3W) and carboplatin (area under the curve = 5-6 IV Q3W). The primary endpoint was the pathological complete response rate. All 51 patients (100%) experienced treatment-related grades 1-2 adverse events, and 2 patients (3.9%) experienced grade 4 events (including elevated alanine transaminase/aspartate transferase levels and Guillain-Barre syndrome). Fifty patients were evaluated for the treatment efficacy. Of them, 13 achieved complete response, and the objective response rate was 74%. Only 41 patients underwent surgical treatment. The pathological complete response rate was 17.1%, the major pathological response rate was 63.4%, and the R0 resection rate was 100%. Approximately 22% of the patients had tumor regression grades 0. Eight patients (19.5%) developed surgery-related complications. The median follow-up time was 18 months (range: 3-29 months). Four patients experienced disease progression, while four died. The median disease-free survival and overall survival were not reached. Camrelizumab combined with docetaxel and carboplatin is an effective and safe neoadjuvant treatment for locally advanced OSCC. This regimen may afford a potential strategy to treat patients with locally advanced OSCC.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Docetaxel/uso terapéutico , Carboplatino , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Terapia Neoadyuvante , Estadificación de Neoplasias , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Esofágicas/patología
3.
Phytother Res ; 37(9): 4236-4250, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37329155

RESUMEN

Mast cells (MCs) are important therapeutic targets for allergic diseases. High-affinity immunoglobulin E (IgE) Fc receptors (FcεRI) trigger abnormal activation of MCs. Allergic rhinitis (AR) is an IgE-mediated antigen inhalation reaction that occurs in the nasal mucosa. MC aggravation and dysfunction were observed during the early stages of AR pathogenesis. Herb-derived dictamnine exhibits anti-inflammatory effects. Here, we investigated the pharmacological effects of herb-derived dictamnine on IgE-induced activation of MCs and an ovalbumin (OVA)-induced murine AR model. The results indicated that dictamnine attenuated OVA-induced local allergic reactions and reduced body temperature in OVA-challenged mice with active systemic anaphylaxis. Additionally, dictamnine decreased the frequency of nasal rubbing and sneezing in an OVA-induced murine AR model. Moreover, dictamnine inhibited FcεRI-activated MC activation in a dose-dependent manner without causing cytotoxicity, reduced the activation of the tyrosine kinase LYN in LAD2 cells, and downregulated the phosphorylation of PLCγ1, IP3R, PKC, Erk1/2, and Akt, which are downstream of LYN. In conclusion, dictamnine suppressed the OVA-stimulated murine model of AR and activated IgE-induced MCs via the LYN kinase-mediated molecular signaling pathway, suggesting that dictamnine may be a promising treatment for AR.


Asunto(s)
Mastocitos , Rinitis Alérgica , Ratones , Animales , Ovalbúmina , Inmunoglobulina E/metabolismo , Transducción de Señal , Rinitis Alérgica/tratamiento farmacológico , Antiinflamatorios/farmacología , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
4.
Rheumatology (Oxford) ; 61(1): 440-451, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33769459

RESUMEN

OBJECTIVE: The occurrence and development of an endemic OA, Kashin-Beck disease (KBD), is closely related to oxidative stress induced by free radicals. The aim of the study was to find the key signalling molecules or pathogenic factors as a potential treatment strategy for KBD. METHODS: Real-time PCR and western blotting were performed to detect the mRNA and protein expression levels in cells and tissues. Immunohistochemical staining was assayed in rat models and human samples obtained from children. The type of cell death was identified by annexin V and propidium iodide staining with flow cytometry. RESULTS: Oxidative stress decreased levels of Smad2 and Smad3 in hypertrophic chondrocytes both in vitro and in vivo. In the cartilage of KBD patients, the expression of Smad2 and Smad3 proteins in the middle and deep zone was significantly decreased with an observed full deletion in the deep zone of some samples. Reduction of Smad2 protein induced necrotic death of hypertrophic chondrocytes, while reduction of Smad3 protein induced apoptosis. The reduction of Smad2 protein was not accompanied by Smad3 protein reduction in hypertrophic chondrocyte necrosis. Furthermore, the reduction of Smad2 also impaired the construction of tissue-engineered cartilage in vitro. CONCLUSION: These studies reveal that oxidative stress causes necrosis of hypertrophic chondrocytes by downregulating Smad2 protein, which increases the pathogenesis of KBD cartilage. The importance of Smad2 in the development of KBD provides a new potential target for the treatment of KBD.


Asunto(s)
Condrocitos/metabolismo , Enfermedad de Kashin-Beck/etiología , Osteoartritis/etiología , Estrés Oxidativo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Animales , Apoptosis , Estudios de Casos y Controles , Línea Celular , Condrocitos/patología , Enfermedades Endémicas , Hipertrofia , Enfermedad de Kashin-Beck/metabolismo , Enfermedad de Kashin-Beck/fisiopatología , Masculino , Ratones , Necrosis , Ratas Sprague-Dawley , Selenio/deficiencia
5.
BMC Musculoskelet Disord ; 22(1): 1051, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930205

RESUMEN

BACKGROUND: Kashin-Beck disease (KBD) is a chronic, deforming, endemic osteochondropathy that begins in patients as young as 2-3 years of age. The pathogenesis of KBD remains unclear, although selenium (Se) deficiency and T-2 toxin food contamination are both linked to the disease. In the present study, we evaluated transforming growth factor-ß receptor (TGF-ßR I and II) levels in clinical samples of KBD and in pre-clinical disease models. METHODS: Human specimens were obtained from the hand phalanges of eight donors with KBD and eight control donors. Animal models of the disease were established using Sprague-Dawley rats, which were fed an Se-deficient diet for 4 weeks and later administered the T-2 toxin. Cartilage cellularity and morphology were examined by hematoxylin and eosin staining. Expression and localization of TGF-ßRI and II were evaluated using immunohistochemical staining and western blotting. RESULTS: In the KBD samples, chondral necrosis was detected based on cartilage cell disappearance and alkalinity loss in the matrix ground substance. In the necrotic areas, TGF-ßRI and II staining were strong. Positive percentages of TGF-ßRI and II staining were higher in the cartilage samples of KBD donors than in those of control donors. TGF-ßRI and II staining was also increased in cartilage samples from rats administered T-2 toxin or fed on Se-deficient plus T-2 toxin diets. CONCLUSION: TGF-ßRI and II may be involved in the pathophysiology of KBD. This study provides new insights into the pathways that contribute to KBD development.


Asunto(s)
Enfermedad de Kashin-Beck/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Animales , China/epidemiología , Humanos , Ratas , Ratas Sprague-Dawley
6.
Clin Exp Hypertens ; 42(1): 52-60, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30786773

RESUMEN

Background: Hypertension (HTN), dyslipidemia and hyperhomocysteinemia (HHcy) are risk factors for cardiovascular disease (CVD).Methods: Hypertensive Chinese subjects (n = 228) were enrolled. MTHFR C667T, MTHFR A1298C, MTR A2756G, and MTRR A66G genotypes were determined. Unconditional logistic regression was performed to determine the associations of serum Hcy status and genotypes with HTN and dyslipidemia.Results: The mean age of hypertensive adults was 65.53 ± 9.94 years, including 88 (38.6%) men and 140 (61.4%) women. Patients with MTHFR 667TT and MTRR GG carriers showed higher serum Hcy levels (P = 0.019 and 0.018, respectively), which is associated with higher serum triacylglycerols (TAG) and total cholesterol (TC) levels (P = 0.014 and 0.044, respectively) and a higher risk for hypertriglyceridemia (OR = 1.889, 95% CI: 1.105-3.229, P = 0.020). Compared with low Hcy and MTRR 66AA, those with high Hcy and 66AA or 66AG+GG showed higher odd\s of hypertriglyceridemia (MTRR 66AA+ high Hcy: OR: 2.692, 95% CI: 1.189-6.096, Pcombined = 0.018; MTRR 66AG/GG+ high Hcy: OR: 3.433, 95% CI: 1.517-7.772, Pcombined = 0.003, respectively). Patients with high Hcy and MTHFR 667CC, as well as those with low Hcy and 667CT+TT, showed lower odds of uncontrolled SBP (MTHFR 667CC+ high Hcy: OR: 0.338, 95% CI: 0.115-0.996, Pcombined = 0.049; MTHFR 667CT/TT+ low Hcy: OR: 0.421, 95% CI: 0.193-0.921, Pcombined = 0.030) compared to patients with low Hcy and MTHFR 667CC.Conclusions: Serum Hcy status and Hcy metabolism gene polymorphisms (MTHFR C667T and MTRR A66G) may have synergistic effects on the prevalence of HTN and dyslipidemia.


Asunto(s)
Ferredoxina-NADP Reductasa/genética , Homocisteína/sangre , Hipertensión/genética , Hipertrigliceridemia/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Anciano , Pueblo Asiatico/genética , Colesterol/sangre , Femenino , Ácido Fólico , Heterocigoto , Humanos , Hipertensión/sangre , Hipertrigliceridemia/sangre , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Triglicéridos/sangre
7.
Biochem Biophys Res Commun ; 500(2): 184-190, 2018 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-29626475

RESUMEN

OBJECTIVE: The aim of this study was to investigate FGF8 and FGFR3 expression in clinical samples of Kashin-Beck disease (KBD), an endemic osteochondropathy found in China, as well as in pre-clinical models of this disease. METHOD: Cartilage was collected from the hand phalanges of five patients with KBD and from five healthy children. Sprague-Dawley rats were administered a selenium-deficient diet for four weeks prior to exposure to the T-2 toxin. ATDC5 cells were differentiated into hypertrophic chondrocytes for twenty-one days, and then treated with 3-morpholinosydnonimine (SIN-1) (0, 1, 3, or 5 mM) for 24 h. FGF8 and FGFR3 were visualized using immunohistochemistry; protein levels were assessed by western blotting, and mRNA levels were determined by real-time RT-PCR. RESULTS: Increased staining of FGF8 and FGFR3 was observed in the cartilage of children with KBD compared to normal children. Both increased FGF8 and FGFR3 staining, as well as protein levels, were also observed in the cartilage of rats fed normal or Se-deficient diets plus T-2 toxin exposure, compared to those in rats fed with normal or Se-deficient diets alone. SIN-1 treatment of hypertrophic chondrocytes (ATCD5 cells) increased FGF8 and FGFR3 protein and mRNA levels in a dose-dependent manner. CONCLUSION: Our data indicate that SIN-1 induces FGF8 and FGFR3 overexpression and this is involved in the abnormal terminal differentiation and degradation of the ECM in cartilage. FGF8 and FGFR3 may therefore play an important role in the onset of deep zone necrosis and pathogenesis in KBD in adolescent children.


Asunto(s)
Condrocitos/metabolismo , Condrocitos/patología , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Enfermedad de Kashin-Beck/patología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Regulación hacia Arriba , Animales , Biomarcadores/metabolismo , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Cartílago Articular/patología , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Niño , Preescolar , Condrocitos/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Hipertrofia , Masculino , Molsidomina/análogos & derivados , Molsidomina/farmacología , Ratas Sprague-Dawley , Regulación hacia Arriba/efectos de los fármacos
8.
Int J Exp Pathol ; 99(6): 312-322, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30680829

RESUMEN

The purpose of this paper was to investigate chondrocyte distribution and death in the cartilage in Kashin-Beck disease (KBD). Apoptotic chondrocytes were detected by TUNEL assay. Ultrastructural changes were examined by transmission electron microscope (TEM). Biochemical markers associated with apoptosis (eg, caspase-3) and necroptosis (eg, RIP3) were investigated by immunohistochemistry. In KBD cartilage chondrocyte death was characterized by paler staining of the cells. Multiple chondral cell clusters surrounded the areas lacking cells in the deep zone. The per cent of TUNEL-positive and RIP3-positive chondrocytes were higher in the middle zones of KBD samples; however, there was some positive staining for TUNEL but negative staining for caspase-3. Immunohistochemistry failed to detect significant differences in caspase-3 levels in KBD children compared to controls, suggesting that beside apoptosis necroptosis dominates as a cell death mechanism in the middle zone of cartilage from KBD children. To clarify further the presence of chondrocyte necroptosis in KBD, we performed TUNEL, caspase-3 and RIP3 staining in a rat KBD model which is based upon T-2 toxin treatment under selenium-deficient conditions. Apoptosis and necroptosis co-existed in the middle zone in this rat KBD model. Ultrastructural analysis of chondrocyte from deep cartilage revealed abnormal cells with numerous morphological changes, such as plasma membrane breakdown, generalized swelling of the cytoplasm and loss of identifiable organelles. Chondrocyte death by necrosis in the deep zone of cartilages in KBD may be a result of exposure to T-2 toxin from bone marrow or bloodstream under selenium-deficient nutrition status in KBD endemic areas. Chondrocyte death plays a key role in either the initiation or the progression of KBD pathogenesis.


Asunto(s)
Apoptosis/fisiología , Condrocitos/patología , Enfermedad de Kashin-Beck/patología , Animales , Cartílago Articular/metabolismo , Cartílago Articular/patología , Cartílago Articular/ultraestructura , Caspasa 3/metabolismo , Muerte Celular/fisiología , Niño , Preescolar , Condrocitos/metabolismo , Condrocitos/ultraestructura , Femenino , Humanos , Enfermedad de Kashin-Beck/metabolismo , Masculino , Microscopía Electrónica de Rastreo , Necrosis , Ratas Sprague-Dawley , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
9.
Int J Mol Sci ; 19(10)2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30274177

RESUMEN

Nanocarriers encapsulating multiple chemotherapeutics are a promising strategy to achieve combinational chemotherapy for cancer therapy; however, they generally use exotic new carriers without therapeutic effect, which usually suffer from carrier-related toxicity issues, as well as having to pass extensive clinical trials to be drug excipients before any clinical applications. Cargo-free nanomedicines, which are fabricated by drugs themselves without new excipients and possess nanoscale characteristics to realize favorable pharmacokinetics and intracellular delivery, have been rapidly developed and drawn much attention to cancer treatment. Herein, we discuss recent advances of cargo-free nanomedicines for cancer treatment. After a brief introduction to the major types of carrier-free nanomedicine, some representative applications of these cargo-free nanomedicines are discussed, including combination therapy, immunotherapy, as well as self-monitoring of drug release. More importantly, this review draws a brief conclusion and discusses the future challenges of cargo-free nanomedicines from our perspective.


Asunto(s)
Excipientes/química , Nanomedicina , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Inmunoterapia
10.
Environ Pollut ; 342: 123114, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081376

RESUMEN

T-2 toxin, a highly toxic type A monotrichothecene mycotoxin, has been found in many different types of cereals and is considered to be one of the most dangerous naturally occurring forms of food contamination. Globally, consuming grain-based food tainted with T-2 toxin poses significant risks to animal and human health. Prior research has indicated that the presence of T-2 toxin may lead to the demise of chondrocytes and the deterioration of the extracellular matrix of cartilage in degenerative bone and joint conditions, such as Kashin-Beck disease. However, the mechanisms by which T-2 toxin exerts its biological toxicity on the degradation of the extracellular matrix in cartilage are not well understood. In the current study, we found original results that demonstrate an upregulation of Toll-Like Receptors (TLR-2, TLR-4) and ESE-1 expression levels in the articular cartilage of a rat model subjected to T-2 toxin exposure. Furthermore, it was revealed that the exposure to T-2 toxin resulted in an increase in the expression of TLR-2, TLR-4, and ESE-1 in human C28/I2 chondrocytes. The findings of this study indicate that the increased expression of TLR-2, TLR-4, and ESE-1 may contribute to the development of degenerative osteoarthritic disease caused by T-2 toxin. Consistent with our hypotheses, we discovered that T-2 toxin increased the expression of MMP-1 and MMP-13 in human C28/I2 chondrocytes. We used a luciferase reporter gene assay to measure the activity of the ESE-1 promoter and transfected cells with plasmids encoding TLR-2 and TLR-4 to investigate their effects on this activity. TLR-2 and TLR-4 can activate ESE-1 transcriptional gene expression, and this expression is mediated through the NF-κB pathway, additional evidence is provided for the participation of the TLRs/NF-κB/ESE-1 signaling pathway in T-2 toxin-induced cartilage matrix degradation. Together, the findings indicated that the TLRs/NF-κB/ESE-1 signaling pathway played an essential part in T-2 toxin-induced cartilage matrix degradation.


Asunto(s)
Cartílago Articular , Toxina T-2 , Humanos , Ratas , Animales , FN-kappa B/metabolismo , Toxina T-2/toxicidad , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Transducción de Señal , Cartílago Articular/metabolismo
11.
Aging (Albany NY) ; 16(5): 4250-4269, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38407978

RESUMEN

Lei's formula (LSF), a traditional Chinese herbal remedy, is recognized for its remarkable clinical effectiveness in treating osteoarthritis (OA). Despite its therapeutic potential, the exact molecular mechanisms underlying LSF's action in OA have remained enigmatic. Existing research has shed light on the role of the mTOR signaling pathway in promoting chondrocyte senescence, a central factor in OA-related cartilage degeneration. Consequently, targeting mTOR to mitigate chondrocyte senescence presents a promising avenue for OA treatment. The primary objective of this study is to establish LSF's chondroprotective potential and confirm its anti-osteoarthritic efficacy through mTOR inhibition. In vivo assessments using an OA mouse model reveal substantial articular cartilage degeneration. However, LSF serves as an effective guardian of articular cartilage, evidenced by reduced subchondral osteosclerosis, increased cartilage thickness, improved surface smoothness, decreased OARSI scores, elevated expression of cartilage anabolic markers (Col2 and Aggrecan), reduced expression of catabolic markers (Adamts5 and MMP13), increased expression of the chondrocyte hypertrophy marker (Col10), and decreased expression of chondrocyte senescence markers (P16 and P21). In vitro findings demonstrate that LSF shields chondrocytes from H2O2-induced apoptosis, inhibits senescence, enhances chondrocyte differentiation, promotes the synthesis of type II collagen and proteoglycans, and reduces cartilage degradation. Mechanistically, LSF suppresses chondrocyte senescence through the mTOR axis, orchestrating the equilibrium between chondrocyte anabolism and catabolism, ultimately leading to reduced apoptosis and decelerated OA cartilage degradation. LSF holds significant promise as a therapeutic approach for OA treatment, offering new insights into potential treatments for this prevalent age-related condition.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratones , Animales , Condrocitos/metabolismo , Peróxido de Hidrógeno/farmacología , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Cartílago Articular/metabolismo
12.
Arch Public Health ; 81(1): 179, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789405

RESUMEN

BACKGROUND: Liver cancer remains a significant burden in Hong Kong. We sought to examine trends in liver cancer incidence using 30 years of cancer registry data in Hong Kong. Additionally, we aimed to assess the impact of age, period and birth cohort on liver cancer incidence, provided projections for liver cancer incidence until 2030, and examined the drivers of liver cancer incidence. METHODS: Data on liver cancer incidence were collected from the Hong Kong Cancer Registry (HKCaR). We assessed age, period, and birth cohort effects using age-period-cohort (APC) models. We employed Bayesian APC analysis with integrated nested Laplace approximations to project the future burden of liver cancer in Hong Kong. Furthermore, we attributed the changes in new liver cancer cases to population growth, population ageing, and epidemiological changes. RESULTS: The study included a total of 51,333 individuals, of whom 39,287 (76.53%) were male. From 1991 to 2020, the age-standardized liver cancer incidence rate in Hong Kong continued declining, while the number of new cases increased significantly, especially among males. The net drift, representing the overall annual percentage change of the age-adjusted rate, was - 3.06% (95% confidence interval [CI]: -3.31% to -2.80%) for males and - 3.85% (95% CI: -4.61% to -3.09%) for females. Local drift, which estimates the annual percentage change over time specific to age group, decreased in all age groups for both sexes, with a more pronounced decrease in younger age groups. The period and cohort risk of developing liver cancer also showed decreasing trends for both sexes. The study projected a decline in liver cancer cases for males but an increase for females in Hong Kong, with an estimated 1,083 cases in males and 710 cases in females by 2030. Demographic decomposition analysis revealed that while population growth and ageing were the main drivers of increased liver cancer cases, epidemiologic shifts mostly offset these factors. CONCLUSION: The period and cohort risk of developing liver cancer in Hong Kong declined due to epidemiological changes. Although the age-standardized incidence rates of liver cancer have also declined, demographic and epidemiological factors have led to lower case expectations in males but a likely increase in females. Further research and epidemiological assessment of the disease are needed.

13.
Nutrients ; 15(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37111096

RESUMEN

Previous research has suggested that high serum ferritin (SF) levels may be associated with dyslipidemia. This study investigated the association between SF levels and dyslipidemia in American adults, which held relevance for both clinical and public health areas concerned with screening and prevention. Data from the pre-pandemic National Health and Nutrition Examination Surveys (NHANES), conducted between 2017 and 2020, were utilized for this analysis. Multivariate linear regression models were used to explore the correlation between lipid and SF concentrations, and the connection between SF and the four types of dyslipidemia was further assessed by using multivariate logistic regression analysis. Odds ratios (ORs; 95% CI) for dyslipidemia were calculated for quartiles of SF concentrations, with the lowest ferritin quartile as the reference. The final subjects consisted of 2676 participants (1290 males and 1386 females). ORs for dyslipidemia were the highest in the fourth quartile (Q4) of SF both in males (OR: 1.60, 95% CI: 1.12-2.28) and females (OR: 1.52, 95% CI: 1.07-2.17). The crude ORs (95% CI) for the risk of High TC and High LDL-C increased progressively in both genders. However, after adjusting for covariates, the trend of significance was only present in females. Finally, the association between total daily iron intake and the four types of dyslipidemia was examined, revealing that the risk of High TG in the third quartile of the total daily iron intake was 2.16 times greater in females (adjusted OR: 3.16, 95% CI: 1.38-7.23). SF concentrations were remarkably associated with dyslipidemia. In females, daily dietary iron intake was associated with High-TG dyslipidemia.


Asunto(s)
Dislipidemias , Humanos , Adulto , Masculino , Femenino , Encuestas Nutricionales , Dislipidemias/epidemiología , Oportunidad Relativa , Ferritinas , Hierro
14.
Int Immunopharmacol ; 117: 110003, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36931000

RESUMEN

BACKGROUND: Allergic contact dermatitis (ACD) is one of the most common dermatoses, which has high disease burden and quality of life impairment. Anti-histamine is not effective in a part of the ACD patients. Thus, the discovery of novel antipruritic therapy is of highly demand. OBJECTIVE: In this study, we investigated the anti-pruritic effects of rosmarinic acid (RA) and explored the underlying mechanism. METHOD: SPF Balb/c mice were randomly divided into control group, ACD model group, RA group (1.0 mg/kg) and loratadine (LORA) group (1.5 mg/kg). Back epidermal thickness was recorded. H&E staining was used for pathological observation. Mast cell degranulation was assessed by toluidine blue staining. ELISA assay was employed to detect cytokines levels. Cortistatin-14 (CST-14) and Mas-related G protein-coupled receptor X2 (MRGPRX2) expression was detetcted by RT-PCR and western blot. Molecular docking assay was used to predict the affinity of RA and MRGPRX2. Surface plasmon resonance (SPR) assay was used to verify structure affinity of RA and MRGPRX2. RESULTS: RA treatment significantly decreased epidermal keratinization and inflammatory cell infiltration in ACD mouse model. Administration of RA significantly reduced secretion of histamine, IL-13, and mRNA expression of CST-14. Furthermore, RA treatment increased mRNA expression of MRGPRX2. In addition, Molecular docking results predict that RA has a good affinity with MRGPRX2. RA displayed a structure affinity (KD = 8.89 × 10-4) with MRGPRX2 by SPR. RA inhibited CST-14 and Compound 48/80 (C48/80)-induced mast cell activation via MRGPRX2-PLCγ1-PKC-NF-κB signaling pathway. CONCLUSION: RA exhibits anti-pruritic and anti-inflammatory effects in ACD mice by inhibiting MRGPRX2-PLCγ1-PKC-NF-κB signaling pathway. RA might emerge as a potential drug for the treatment of pruritus and skin inflammation in the setting of ACD.


Asunto(s)
Dermatitis Alérgica por Contacto , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Mastocitos , Simulación del Acoplamiento Molecular , Calidad de Vida , Prurito/tratamiento farmacológico , Dermatitis Alérgica por Contacto/patología , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo , Inflamación/metabolismo , ARN Mensajero/metabolismo , Degranulación de la Célula , Ácido Rosmarínico
15.
Toxicon ; 232: 107193, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37423522

RESUMEN

The growth plate cartilage is one of the most common areas that Kashin-Beck Disease attacks. However, the exact mechanism of growth plate damage remains unclear. Here, we demonstrated that Smad2 and Smad3 were closely associated with the differentiation of chondrocytes. Reduction of Smad2 and Smad3 were found both in T-2 toxin-induced human chondrocytes in vitro and in T-2 toxin-induced rat growth plate in vivo. Blunting Smad2 or Smad3 both strikingly induced human chondrocytes apoptosis, implying a plausible signaling pathway to clarify the mechanism of T-2 toxin-induced oxidative damage. Furthermore, decreased Smad2 and Smad3 were also observed in the growth plates of KBD children. Collectively, our findings clearly illustrated that T-2 toxin-induced chondrocyte apoptosis contributes to growth plate damage through Smad2 and Smad3 signaling, which refines the pathogenesis of endemic osteoarthritis and provides two potential targets for the prevention and repairment of endemic osteoarthritis.


Asunto(s)
Osteoartritis , Toxina T-2 , Niño , Ratas , Humanos , Animales , Condrocitos/metabolismo , Toxina T-2/toxicidad , Toxina T-2/metabolismo , Placa de Crecimiento , Apoptosis , Osteoartritis/metabolismo , Osteoartritis/patología , Transducción de Señal
16.
Phytomedicine ; 116: 154825, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37178572

RESUMEN

BACKGROUND: Allergic rhinitis (AR) defined as inflammation and tissue remodeling of the nasal mucosa in atopic individuals after allergen exposure. Alpha-linolenic acid [cis-9, cis-12, cis-15-octadecatrienoic acid (18:3)] (ALA) as dietary supplementation can reduce inflammation and allergic symptoms. OBJECTIVE: To evaluate the potential therapeutic effect and mechanism of ALA in AR mouse model. METHODS: Ovalbumin sensitized AR mouse model were challenged with oral ALA administration. Nasal symptoms, tissue pathology, immune cell infiltration and goblet cell hyperplasia were investigated. Levels of IgE, TNF-ß, IFN-γ, IL-2, IL-4, IL-5, IL-12, IL-13 and IL-25 were determined by ELISA in serum and nasal fluid. Quantitative RT-PCR and immunofluorescence were performed for occludin and zonula occludens-1 expression. CD3+CD4+ T-cells from peripheral blood and splenic lymphocytes were isolated and Th1/Th2 ratio were determined. Mouse naive CD4+ T cell were isolated and Th1/Th2 ratio, IL-4Rα expression, and IL5/IL13 secretion were determined. IL-4Rα-JAK2-STAT3 pathway change in AR mice were performed by western blot. RESULTS: Ovalbumin induced AR, nasal symptoms, pathological performance, IgE, and cytokine production. ALA treated mice showed reduced nasal symptoms, nasal inflammation, nasal septum thickening, goblet cell hyperplasia, and eosinophil infiltration. In serum and nasal fluid of ovalbumin challenged mice, ALA decreased IgE, IL-4 levels, and the increase of Th2-cells. ALA prevented the disruption of the epithelial cell barrier in ovalbumin-challenged AR mice. Simultaneously, ALA prevents IL-4 induced barrier disruption. ALA treatment of AR by affecting the differentiation stage of CD4+T cells and block IL-4Rα-JAK2-STAT3 pathway. CONCLUSION: This study suggests that ALA has the potential therapeutic effect to ovalbumin-induced AR. ALA can affect the differentiation stage of CD4+T cells and improve epithelial barrier functions through IL-4Rα-JAK2-STAT3 pathways. CLINICAL IMPLICATION: ALA might be considered as drug candidate for improving epithelial barrier function through Th1/Th2 ratio recovery in AR.


Asunto(s)
Rinitis Alérgica , Ácido alfa-Linolénico , Animales , Ratones , Ácido alfa-Linolénico/farmacología , Citocinas/metabolismo , Ovalbúmina , Hiperplasia/tratamiento farmacológico , Hiperplasia/patología , Interleucina-4/metabolismo , Rinitis Alérgica/tratamiento farmacológico , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , Células Th2 , Inflamación/tratamiento farmacológico , Diferenciación Celular , Inmunoglobulina E , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
17.
Sci Rep ; 13(1): 14302, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652982

RESUMEN

A patented strain of Bacillus amyloliquefaciens C-1 in our laboratory could produce functional sodium selenite (Na2SeO3) under optimized fermentation conditions. With the strong stress resistance and abundant secondary metabolites, C-1 showed potential to be developed as selenium-enriched postbiotics. C-1 has the ability to synthesize SeNPs when incubated with 100 µg/ml Na2SeO3 for 30 h at 30 °C aerobically with 10% seeds-culture. The transformation rate from Na2SeO3 into SeNPs reached to 55.51%. After selenium enrichment, there were no significant morphology changes in C-1 cells but obvious SeNPs accumulated inside of cells, observed by scanning electron microscope and transmission electron microscope, verified by energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. SeNPs had antioxidant activity in radical scavenge of superoxide (O2-), Hydroxyl radical (OH-) and 1,1-diphenyl-2-picryl-hydrazine (DPPH), where scavenging ability of OH- is the highest. Selenium-enriched C-1 had obvious anti-inflammatory effect in protecting integrity of Caco-2 cell membrane destroyed by S. typhimurium; it could preventing inflammatory damage in Caco-2 stressed by 200 µM H2O2 for 4 h, with significantly reduced expression of IL-8 (1.687 vs. 3.487, P = 0.01), IL-1ß (1.031 vs. 5.000, P < 0.001), TNF-α (2.677 vs. 9.331, P < 0.001), increased Claudin-1 (0.971 vs. 0.611, P < 0.001) and Occludin (0.750 vs. 0.307, P < 0.001). Transcriptome data analysis showed that there were 381 differential genes in the vegetative growth stage and 1674 differential genes in the sporulation stage of C-1 with and without selenium-enrichment. A total of 22 ABC transporter protein-related genes at vegetative stage and 70 ABC transporter protein-related genes at sporulation stage were founded. Genes encoding MsrA, thiol, glutathione and thioredoxin reduction were significantly up-regulated; genes related to ATP synthase such as atpA and atpD genes showed down-regulated during vegetative stage; the flagellar-related genes (flgG, fliM, fliL, and fliJ) showed down-regulated during sporulation stage. The motility, chemotaxis and colonization ability were weakened along with synthesized SeNPs accumulated intracellular at sporulation stage. B. amyloliquefaciens C-1 could convert extracellular selenite into intracellular SeNPs through the oxidation-reduction pathway, with strong selenium-enriched metabolism. The SeNPs and selenium-enriched cells had potential to be developed as nano-selenium biomaterials and selenium-enriched postbiotics.


Asunto(s)
Bacillus amyloliquefaciens , Selenio , Humanos , Selenio/farmacología , Células CACO-2 , Peróxido de Hidrógeno , Transportadoras de Casetes de Unión a ATP , Antiinflamatorios
18.
Nutrients ; 15(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447314

RESUMEN

Dysregulation of lipid metabolism has been implicated in age-related macular degeneration (AMD), the leading cause of blindness among the elderly. Lecithin cholesterol acyltransferase (LCAT) is an important enzyme responsible for lipid metabolism, which could be regulated by DNA methylation during the development of various age-related diseases. This study aimed to assess the association between LCAT DNA methylation and the risk of AMD, and to examine whether plasma vitamin and carotenoid concentrations modified this association. A total of 126 cases of AMD and 174 controls were included in the present analysis. LCAT DNA methylation was detected by quantitative real-time methylation-1specific PCR (qMSP). Circulating vitamins and carotenoids were measured using reversed-phase high-performance liquid chromatography (RP-HPLC). DNA methylation of LCAT was significantly higher in patients with AMD than those in the control subjects. After multivariable adjustment, participants in the highest tertile of LCAT DNA methylation had a 5.37-fold higher risk (95% CI: 2.56, 11.28) of AMD compared with those in the lowest tertile. Each standard deviation (SD) increment of LCAT DNA methylation was associated with a 2.23-fold (95% CI: 1.58, 3.13) increased risk of AMD. There was a J-shaped association between LCAT DNA methylation and AMD risk (Pnon-linearity = 0.03). Higher concentrations of plasma retinol and ß-cryptoxanthin were significantly associated with decreased levels of LCAT DNA methylation, with the multivariate-adjusted ß coefficient being -0.05 (95% CI: -0.08, -0.01) and -0.25 (95% CI: -0.42, -0.08), respectively. In joint analyses of LCAT DNA methylation and plasma vitamin and carotenoid concentrations, the inverse association between increased LCAT DNA methylation and AMD risk was more pronounced among participants who had a lower concentration of plasma retinol and ß-cryptoxanthin. These findings highlight the importance of comprehensively assessing LCAT DNA methylation and increasing vitamin and carotenoid status for the prevention of AMD.


Asunto(s)
Degeneración Macular , Vitaminas , Humanos , Anciano , Carotenoides , Vitamina A , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Metilación de ADN , beta-Criptoxantina , Degeneración Macular/prevención & control , Vitamina K
19.
Toxicology ; 492: 153529, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37120063

RESUMEN

Chronic arsenic exposure causes myocardial damage. The aim of this study is to investigate if oxidative stress and reduction in NO is involved in the myocardial damage induced by arsenic in drinking water. Rats were divided into a control group and different doses of sodium arsenite. With increasing sodium arsenite concentrations in drinking water, localised inflammatory foci and necrotic myocardial tissues were gradually observed. Compared to the control group, the activities and gene expression of antioxidant enzymes in arsenic-exposed rats decreased. NO content and the NOS activity as well as the expression of NOS mRNA in the myocardial tissue of exposed rats, decreased, and the extracellular NO content of cardiomyocytes treated with sodium arsenite also decreased. The rate of cell apoptosis induced by sodium arsenite decreased after treatment with sodium nitroprusside (an NO donor). In conclusion, arsenic exposure in drinking water can lead to myocardial injury and cardiomyocyte apoptosis through oxidative stress and a reduction in NO content.


Asunto(s)
Arsénico , Arsenitos , Agua Potable , Ratas , Animales , Arsénico/toxicidad , Estrés Oxidativo , Arsenitos/toxicidad , Compuestos de Sodio/toxicidad
20.
Front Cell Infect Microbiol ; 13: 1259472, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37937207

RESUMEN

Introduction: An extended-spectrum beta-lactamase (ESBL)-hypervirulent Klebsiella pneumoniae (HvKP) strain HKE9 was isolated from the blood in an outpatient. Methods: The effect of the global regulatory factor RpoS on antimicrobial resistance, pathogenicity, and environmental adaptability was elucidated. Results: HKE9 is a novel ST3355 (K20/O2a) hypervirulent strain with a positive string test and resistant to cephems except cefotetan. It has a genome size of 5.6M, including two plasmids. CTX-M-15 was found in plasmid 2, and only ompk37 was found in the chromosome. HKE9 could produce bacterial siderophores, and genes of enterobactin, yersiniabactin, aerobactin, and salmochelin have been retrieved in the genome. As a global regulatory factor, knockout of rpoS did not change antimicrobial resistance or hemolytic phenotype while increasing the virulence to Galleria mellonella larvae and showing higher viscosity. Moreover, rpoS knockout can increase bacterial competitiveness and cell adhesion ability. Interestingly, HKE9-M-rpoS decreased resistance to acidic pH, high osmotic pressure, heat shock, and ultraviolet and became sensitive to disinfectants (H2O2, alcohol, and sodium hypochlorite). Although there were 13 Type 6 secretion system (T6SS) core genes divided into two segments with tle1 between segments in the chromosome, transcriptomic analysis showed that rpoS negatively regulated T4SS located on plasmid 2, type 1, and type 3 fimbriae and positively regulate genes responsible for acidic response, hyperosmotic pressure, heat shock, oxidative stress, alcohol and hypochlorous acid metabolism, and quorum sensing. Discussion: Here, this novel ST3355 ESBL-HvKP strain HKE9 may spread via various clonal types. The important regulation effect of rpoS is the enhanced tolerance and resistance to environmental stress and disinfectants, which may be at the cost of reducing virulence and regulated by T4SS.


Asunto(s)
Antiinfecciosos , Desinfectantes , Animales , Virulencia/genética , Klebsiella pneumoniae , Factores de Virulencia/genética , Factores de Virulencia/farmacología , Transcriptoma , Peróxido de Hidrógeno/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Fenotipo , Desinfectantes/farmacología , Antiinfecciosos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA